首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Several polar contaminants were found in screening analyses of 30 representative surface water samples collected from rivers, lakes, and canals in Berlin. Residues of pharmaceuticals and N-(phenylsulfonyl)-sarcosine originating from various sewage treatment plants effluents were found at concentrations up to the μg/L-level in the surface water, whereas the concentrations of polar pesticides such as dichlorprop and mecoprop were always below 0.1 μg/L. The pharmaceuticals most frequently detected in the surface water samples include clofibric acid, diclofenac, ibuprofen, propiphenazone, and two other drug metabolites. Additional investigations of groundwater wells of a drinking water plant have shown that polar contaminants such as drug residues or N-(phenylsulfonyl)-sarcosine easily leach through the subsoil into the groundwater aquifers when contaminated surface water is used for groundwater recharge in drinking water production.  相似文献   

2.
The in vitro interference of fibrate (gemfibrozil, clofibrate, clofibric acid), anti-inflammatory (ibuprofen, diclofenac), and anti-depressive (fluoxetine, fluvoxamine) drugs with key enzymatic activities—C17,20-lyase and CYP11β-involved in the synthesis of active androgens in gonads of male carp have been investigated. Among the tested compounds, fluvoxamine and fluoxetine were the strongest inhibitors of C17,20-lyase and CYP11β enzymes, with IC50s in the range of 321-335 μM and 244-550 μM, respectively. To our knowledge this is the first report on the interaction of pharmaceutical compounds with enzymatic systems involved in the synthesis of oxy-androgens. As oxy-androgens are known to influence spermatogenesis and stimulate reproductive behavior and secondary sexual characteristics in male fish, this work highlights the need for further investigating these endpoints when designing specific in vivo studies to assess the endocrine disruptive effect of pharmaceuticals in fish.  相似文献   

3.
This study investigates the applicability of selected pharmaceutical compounds (e.g. sulfamethoxazole, carbamazepine, ibuprofen) as anthropogenic indicators for the interaction of surface water and groundwater in the hyporheic zone of an alluvial stream. Differences in transport behaviour and the resulting distribution of the pharmaceuticals in the riverine groundwater were evaluated. The investigated field site in the Grand Duchy of Luxembourg, Europe is represented by low permeable sediments and confined aquifer conditions. Water samples from single‐screen and multilevel observation wells installed in the riverbank at the field site were taken and analysed for selected pharmaceuticals and major ions for a period of 6 months. Surface water and groundwater levels were recorded to detect effluent and influent aquifer conditions. Nearly all pharmaceuticals that were detected in the stream were also found in the riverine groundwater. However, concentrations were significantly lower in groundwater than in surface water. A classification into mobile and sorbing/degradable pharmaceuticals based on their transport relevant properties was made and verified by the field data. Gradients with depth for some of these pharmaceuticals were documented and a more detailed understanding of the system stream/riverbank was obtained. It was demonstrated that the selected pharmaceutical compounds can be used as anthropogenic indicators at the investigated field site. However, not all compounds seem to be suitable indicators as their transport behaviour is not fully understood. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Occurrences of pharmaceutically active compounds in surface water and sewage water have been widely reported. Investigations show the presence of several classes of pharmaceuticals such as antirheumatics (e.g., diclofenac), analgesics (e.g., propyphenazone), and blood lipid regulators (clofibric acid), even in ground water. Compared to their occurrences in surface water, however, the reported incidences of drugs in ground water are much rarer. This may be due to the input, but also to transport processes and degradation in the aquifer. In field studies investigating ground water sampled at a bank infiltration site at Lake Tegel, Berlin, Germany, clofibric acid was found at concentrations up to 290 ng/L, and propyphenazone up to 250 ng/L, whereas concentrations of diclofenac were around the detection limit. The aim of this study was to investigate the ground water transport behavior of the pharmaceuticals clofibric acid, propyphenazone, and diclofenac with a laboratory soil column experiment. Results show that clofibric acid exhibits no degradation and almost no retardation (Rf = 1.1). Diclofenac (Rf = 2.0) and propyphenazone (Rf = 1.6) are retarded, whereas significant degradation was not observed for both pharmaceuticals under the prevailing conditions in the soil column. We conclude that the concentration distribution of the pharmaceuticals at the bank filtration site at Lake Tegel is controlled by sorption, desorption, and input variation, rather than by degradation.  相似文献   

5.
Community Structures of Different Groundwater Habitats Investigated Using Methods of Molecular Biology The degradation of pollutants in groundwater and aquifers depends on microbiological and hydrogeochemical processes. To understand the transport and fate of anthropogenic compounds during bank filtration and artificial recharge of groundwater it is necessary to gain more information about the structure of microbial populations in these systems. The population structure of aerobic, anaerobic groundwater habitats and of water samples during artificial groundwater recharge was examined by 16S rDNA based analysis. Water and sediment samples were collected from a groundwater catchment area with artificial groundwater recharge near the river Ruhr in NW-Germany. 16S rRNA genes of mixed bacterial DNA from different samples were amplified by PCR (polymerase chain reaction) with eubacterial primer sequences. To reveal eubacterial population structure amplified PCR-products were separated by DGGE (denaturing gradient gel electrophoresis) on the basis of melting domain structure and nucleotide composition. DGGE patterns of groundwater enrichment cultures and groundwater samples were compared to demonstrate differences between the use of cultivation dependent and molecularbiological approaches. The DGGE pattern of groundwater is very complex and differs significantly from DGGE patterns of groundwater enrichment cultures characterized by a small number of distinct bands. This shows the small quantity of culturable microorganisms in groundwater eco-systems. Aerobic and anaerobic groundwater and sediment samples differ markedly in their DGGE profiles. Different hydrogeochemical zones of this groundwater catchment area are mirrowed by distinct DGGE patterns indicating changes in microbial community structure.Analysis of bacterial population structure in the course of artificial groundwater recharge shows identical DGGE patterns comparing surface water samples to samples taken be-fore gravel prefiltration and before sand filtration. In contrast the DGGE pattern of artificial recharged groundwater differs markedly, indicating significant changes in microbial population during underground passage.  相似文献   

6.
Assessing the Suitability of a Molecularbiological Method To Characterise the Microbial Populations in Groundwater A molecularbiological technique was used to characterise the bacterial community structure of groundwater habitats. This method consists of the isolation of bacterial DNA from the samples, amplification of 16S rDNA by PCR (polymerase chain reaction), and separation of the amplified DNA by DGGE (denaturing gradient gel electrophoresis). By using more specific primer combinations in the PCR instead of universal eubacterial primers, also groups of microorganisms (Proteobacteria, sulfate reducer, Archaea) were determined. The resulting DGGE patterns that reflect the microbial diversity are compared and differences or similarities evaluated. In the present studies, groundwater from different sites (bank filtrate, artificially recharged groundwater, and natural groundwater) and with changing redox milieus (aerobic, anaerobic) were investigated as well as the solid aquifer material. Besides, samples were taken from the different stages of artificial groundwater recharge, i.e., from surface water to the drain tile. Samples from groundwater derived from sites with different hydrogeochemical or hydrological conditions like bank filtrate and recharged groundwater revealed great differences in DGGE patterns indicating a characteristic species composition in these habitats, while samples taken at different times from the same groundwater showed only small seasonal variations. Clearly different patterns were also found for groundwater and the adjacent solid material as well as for anaerobic and aerobic groundwaters. Looking at artificial groundwater recharge, almost identical patterns were found in raw water and samples from gravel and sand filtration. DGGE patterns from the resulting groundwater indicated a total change in community structure during underground passage. By using group specific primers, Desulfovibrionaceae, Desulfobacteriaceae, and Archaea could be detected in anaerobic groundwaters.The molecularbiological approach described here gives an increasingly comprehensive and more precise picture of the microbial population of different environments. It is especially suitable to compare the community structure from different habitats or to analyse changes for example due to environmental stress at the same site.  相似文献   

7.
8.
9.
Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.  相似文献   

10.
In order to examine the Corg flow in rapid sand filter columns for the elimination of iron and manganese, reduced groundwater was treated in a pilot plant consisting of a trickling filter column (TF I) followed by a wet type filter column (WF II) and a separate wet type filter column (WF sep). Additionally the effect of filtration on BOM was studied by measuring AOC and BDOC. The biological processes in TF I and WF sep led to an elimination of iron, ammonia, and manganese. Moreover, the filtration decreased the NOM content. 21% and 23% of the TOC were eliminated in TF I and in WF sep, respectively. WF II caused no significant Corg reduction. The calculation of the Corg flow in the filter columns showed that bacteria took part in the TOC elimination. From the TOC removed, about 24% was eliminated by metabolic activities of the bacterial population whereas 86% was adsorbed onto iron sludge. Similar results were obtained for the TF I column and for the WF sep column as well. The calculated Corg flow was confirmed by the BDOC measurements. The filtration process led to a BDOC decrease. TF I and WF sep reduced appoximately 35% of the biodegradable organic carbon. In contrast there was no significant elimination by WF II. The AOC results suggest that an AOC production and an AOC elimination process exist in rapid sand filters for groundwater treatment. In the trickling filter column significant AOC production was found, whereas in the wet type filter columns AOC elimination was predominating.  相似文献   

11.
12.
This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE–LC–MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ > 1), indicating potentially high risk to aquatic organisms in coastal waters.  相似文献   

13.
The occurrence of selected human pharmaceutical compounds in UK estuaries   总被引:2,自引:0,他引:2  
This report describes a scoping study conducted in order to establish whether pharmaceutical compounds may be present in UK estuaries. Surface water samples collected from five UK estuaries were analysed for the presence of 14 pharmaceutical compounds selected from the priority lists of the UK Environment Agency and the Oslo and Paris Commission (OSPAR). The pharmaceutical compounds/metabolites clofibric acid, clotrimazole, dextropropoxyphene, diclofenac, ibuprofen, mefenamic acid, propranolol, tamoxifen and trimethoprim were detected at measurable concentrations in the samples collected. The concentrations of erythromycin, lofepramine, paracetamol, sulfamethoxazole and acetyl-sulfamethoxazole were all below the limits of detection of the methods used (between 4 and 20 ng l(-1)). The anti-fungal agent clotrimazole was the most frequently detected at a maximal concentration of 22 ng l(-1) and a median concentration of 7 ng l(-1). The analgesic compound ibuprofen was detected at a maximal concentration of approximately 930 ng l(-1) and a median concentration of 48 ng l(-1), whilst the other pharmaceutical compounds were detected between the limits of detection of the method used and 570 ng l(-1).  相似文献   

14.
The adsorption kinetics of carbamazepine, naproxen, and trimethoprim in aqueous solution by Amberlite? XAD‐7 has been studied. The influence of adsorbent dose (1–3 g/L), stirring rate (80–240 rpm), pH (2–9), temperature (20–60°C), and initial concentration (25–75 ppm) on the adsorption kinetics has been analyzed. The removal efficiency in the first 2 h reaches 85% for carbamazepine, 60% for naproxen, and 70% for trimethoprim. pH appears to be the most important factor conditioning the removal of these latter solutes, whereas carbamazepine adsorption seems to be independent of the pH of the adsorptive solution. Initial concentration and operation temperature moderately influence the adsorption process. Finally, stirring rate scarcely affects the process. The experimental data have been fitted to four kinetic models, namely pseudo‐first and pseudo‐second order, intra‐particle diffusion and Bangham's. The model providing the best fit is the pseudo‐second order one. Again, pH is the factor that affects the adsorption rate in a more remarkable manner although other parameters such as temperature and stirring rate also contribute to accelerate the removal of the solutes. Under the optimal operation conditions, Amberlite? XAD‐7 exhibits a promising ability for the removal of the pharmaceuticals under study.  相似文献   

15.
Human pharmaceuticals, like the lipid lowering agent gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac are causing environmental concern. In this study, the marine mussel (Mytilus spp.) was exposed by injection to environmentally relevant and elevated (1 μg/L and 1000 μg/L) concentrations of both compounds and biomarker expression was observed. Gemfibrozil exposure induced biomarkers of stress (glutathione S-transferase and metallothionein) at both concentrations 24 h and 96 h after exposure, respectively. Biomarkers of damage (lipid peroxidation (LPO) and DNA damage) were significantly affected, as well as the biomarker for reproduction, alkali-labile phosphate assay, indicating the potential oxidative stress and endocrine disrupting effect of gemfibrozil. Diclofenac significantly induced LPO after 96 h indicating tissue damage. Additionally standard toxicity tests using the marine species Vibrio fischeri, Skeletonema costatum and Tisbe battagliai showed differences in sensitivity to both drugs in the mg/L range. Results indicate a suite of tests should be used to give accurate information for regulation.  相似文献   

16.
Laboratory biodegradation batch studies were performed to investigate the degradation behavior of six selected UV filters, namely benzophenone‐3 (BP‐3), 3‐(4‐methylbenzylidene) camphor (4‐MBC), Octyl 4‐methoxycinnamate (OMC), Octocrylene (OC), 2‐(3‐t‐butyl‐2‐hydroxy‐5‐methylphenyl)‐5‐chloro benzotriazole (UV‐326), and 2‐(2’‐hydroxy‐5’‐octylphenyl)‐benzotriazole (UV‐329) in an aquifer microcosm (groundwater and aquifer sediment mixture) under aerobic and anaerobic (nitrate, sulfate, and Fe(III) reducing) conditions within 77 d. The results from the biodegradation experiments showed that the six UV filters were degraded well in the aquifer materials under different redox conditions. Rapid biodegradation was observed for BP‐3 and OMC in the aquifer materials, with their half‐lives of 1.5‐8.8 d and 1.3‐5.2 d, respectively. In most cases, aerobic conditions were more favorable for the degradation of the UV filters in aquifer materials. Relatively slow degradation of 4‐MBC, UV‐326, and UV‐329 under anaerobic conditions was noted with their half‐lives ranging between 47 d and 126 d, indicating potential persistence in anaerobic aquifers. The results showed that redox conditions could have significant effects on biodegradation of the UV filters in aquifers.  相似文献   

17.
Most conventional wastewater treatment plants remove very small amounts of micropollutants, such as pharmaceuticals. Here, the ability of two different types of submerged nanofiltration flat sheet modules to remove pharmaceuticals from wastewater is analyzed. The two nanofiltration membranes were used at relatively low pressures of only 0.3 and 0.7 bar. At such low pressures, the membranes did not retain salts to a great extent. This is advantageous in wastewater treatment because no salt concentrate is produced. Carbamazepine was retained only slightly by the nanofiltration membranes, whereas approximately 60% of diclofenac and naproxen were retained by both membranes. This level of effectiveness might not be enough to justify the use of such a system as an additional treatment step in wastewater treatment plants.  相似文献   

18.
This study reports the first comprehensive data set of characteristic concentrations of four artificial sweeteners: acesulfame (ACE), sucralose (SUC), saccharin (SAC), and cyclamate (CYC), and their ratios with nutrients, for untreated septic system wastewater. Samples were collected from the tanks of 19 different septic systems from across Ontario, Canada; these had a variety of usages, from single‐family cottages to multiple‐dwelling (campground or resort) facilities and had no additional treatment systems. The artificial sweetener concentrations and their relative proportions were highly variable in some cases, both temporally for several individual tanks and from site‐to‐site. Variability tended to be lower for multiple‐dwelling compared to single‐dwelling systems. This variability likely reflects differing use of artificial sweetener‐containing products. The median concentrations for the complete data set of all four artificial sweeteners (in a range of 10 to 60 μg/L) were of a similar order of magnitude, but slightly higher, than has generally been reported for wastewater treatment plant influent (though these vary substantially globally). Both SUC and ACE provided adequate positive linear relationships for dissolved nitrogen and phosphorus in the septic tanks, while a summation of ACE and SUC concentrations also gave a strong correlation. In contrast, CYC and SAC showed poor linear correlation with these nutrients. These reported ranges for artificial sweetener concentrations and ratios with nutrients may be used in future studies to estimate the contributions of nutrients or other wastewater constituents (e.g., pharmaceuticals, bacteria, and viruses) from domestic septic systems to groundwater, including water supply or irrigation wells, and nearby surface water bodies.  相似文献   

19.
Examination of the Degradation of Drugs in Municipal Sewage Plants Using Liquid Chromatography-Electrospray Mass Spectrometry Numerous drugs can be identified in the secondary effluent of municipal sewage plants. In order to obtain information about the degree of elimination (adsorption, aerobic degradation) of these compounds, a batch reactor containing different drugs in environmentally relevant concentrations and a suspension of activated sludge was coupled to a HPLC-MS-MS system. During a testing period of three days concentration-time-curves were recorded. For most of the examined drugs (acetamidoantipyrine, crotamiton, diclofenac, primidone, propyphenazone) solely a strong decrease of the initial concentration within the first 15 minutes was observed, which was interpreted primarily as adsorption to the activated sludge. For acetaminophenol and pentoxifyllin an additional slower decrease in concentration within several hours was observed. This slower elimination was interpreted to be caused mainly by primary degradation. It could be shown that dihydrocodeine is oxidized to hydrocodone in the batch reactor. The conjugate acetaminophen glucuronide was cleaved.  相似文献   

20.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号