首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The elastic moduli of single-crystal MgF2 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T=298?650° K. These new data are consistent with those obtained by other ultrasonic pulse techniques at and below room temperature and agree favourably with polycrystalline data above room temperature. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range with the curvature in the same sense for all the moduli. For the rutile-structure fluorides and oxides, evaluation of the temperature derivatives of the elastic moduli at constant volume indicates that the dominant temperature effect is extrinsic for (?K S /?T) P and intrinsic for (?μ/?T) P , where K S and μ are the isotropic bulk and shear moduli, respectively. There appears to be no simple relationship between (?c/?T) P and crystallographic parameters for the rutile structure, and |(?c/?T) P | for the fluorides is in general very much lower than the corresponding |(?c/?T) P | for the oxides. For the pair of compounds MgF2-TiO2, there is no evident analogue relationship for high-temperature elastic properties.  相似文献   

2.
The thermoelastic parameters of Ca3Cr2Si3O12 uvarovite garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1100 K by synchrotron radiation energy-dispersive X-ray diffraction within a 6-6-type multi-anvil press apparatus. A least-square fitting of room T data to a third-order Birch–Murnaghan (BM3) EoS yielded K0 = 164.2 ± 0.7 GPa, V0 = 1735.9 ± 0.3 Å3 (K’0 fixed to 4.0). PVT data were fitted simultaneously by a modified HT-BM3 EoS, which gave the isothermal bulk modulus K0 = 163.6 ± 2.6 GPa, K’0 = 4.1 ± 0.5, its temperature derivative (?K0,T/?T)P = –0.014 ± 0.002 GPa K?1, and the thermal expansion coefficients a0 = 2.32 ± 0.13 ×10?5 K?1 and b0 = 2.13 ± 2.18 ×10?9 K?2 (K’0 fixed to 4.0). Our results showed that the Cr3+ enrichment in natural systems likely increases the density of ugrandite garnets, resulting in a substantial increase of mantle garnet densities in regions where Cr-rich spinel releases chromium through a metasomatic reaction.  相似文献   

3.
The lattice parameter of magnesiowüstite (Mg0.6Fe0.4)O has been measured up to a pressure of 30 GPa and a temperature of 800 K, using an external heated diamond anvil cell and diffraction using X-rays from a synchrotron source. The experiments were conducted under quasi-hydrostatic condition, using neon as a pressure transmitting medium. The experimental P-V-T data were fitted to a thermal-pressure model with the isothermal bulk modulus at room temperature K T0 = 157 GPa, (?K TO /?P) T =4, (?K T /?T) P =-2.7(3) × 10-2 GPa/K, (?K T /?T) v =-0.2(2) × 10-2 GPa/K and the Anderson-Grüneisen parameter δ T =4.3(5) above the Debye temperature. The data were also fitted to the Mie-Grüneisen thermal equation of state. The least-squares fit yields the Debye temperature θ DO = 500(20) K, the Grüneisen parameter γ 0=1.50(5), and the volume dependence q=1.1(5). Both thermal-pressure models give consistent P-V-T relations for magnesiowüstite to 140 GPa and 4000 K. The P-V-T relations for magnesiowüstite were also calculate by using a modified high-temperature Birch-Murnaghan equation of state with a δ t of 4.3. The results are consistent with those calculated by using the thermal-pressure model and the Mie-Grüneisen relation to 140 GPa and 3000 K.  相似文献   

4.
The elastic moduli (c) of single crystal KMgF3 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T=298?550 K, and as a function of pressure from P=1 bar?2.5 kbar. Room temperature values of the elastic moduli and their temperature derivatives are consistent with Reshchikova's (1969) values. Comparison with the data for SrTiO3 indicates that, for most of the moduli, 1/c(?c/?T) P and (?c/?P) T are very similar for the fluoride-oxide analogue pair, KMgF3-SrTiO3. Values of (?c/?P) T for KMgF3 are calculated from a simple central force model using parameters determined for KF and are in good agreement with the measured values. The bulk sound velocity-mean atomic weight relationship, v ф M 1/2=constant, is well obeyed by the fluoroperovskites; comparison with the perovskite oxide data on a log-log plot of v ф versus M leads to a value of 70% for the relative effective charge of the oxides with respect to the fluorides.  相似文献   

5.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

6.
The thermoelastic parameters of synthetic Mn3Al2Si3O12 spessartine garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1,100 K, by synchrotron radiation energy dispersive X-ray diffraction within a DIA-type multi-anvil press apparatus. The analysis of room temperature data yielded K 0 = 172 ± 4 GPa and K 0  = 5.0 ± 0.9 when V 0,300 is fixed to 1,564.96 Å3. Fitting of PVT data by means of the high-temperature third-order Birch–Murnaghan EoS gives the thermoelastic parameters: K 0 = 171 ± 4 GPa, K 0  = 5.3 ± 0.8, (?K 0,T /?T) P  = ?0.049 ± 0.007 GPa K?1, a 0 = 1.59 ± 0.33 × 10?5 K?1 and b 0 = 2.91 ± 0.69 × 10?8 K?2 (e.g., α 0,300 = 2.46 ± 0.54 × 10?5 K?1). Comparison with thermoelastic properties of other garnet end-members indicated that the compression mechanism of spessartine might be the same as almandine and pyrope but differs from that of grossular. On the other hand, at high temperature, spessartine softens substantially faster than pyrope and grossular. Such softening, which is also reported for almandine, emphasize the importance of the cation in the dodecahedral site on the thermoelastic properties of aluminosilicate garnet.  相似文献   

7.
Garnets that exhibit mixed growth and diffusion zoning are used to evaluate the effect of grossular content on garnet Fe–Mg exchange reactions. These garnets from the uppermost amphibolite-facies to granulite-facies gneiss of the Wissahickon Group, southeastern Pennsylvania, show variation in grossular content (0.035<X Ca<0.14) but nearly constant Mg? (X Mg/(X Mg+X Fe) and X Mn through the interior indicating re-equilibration of garnet and matrix minerals with respect to iron, magnesium, and manganese. Mg? is not correlated with calcium content, evidence that the effect of calcium on garnet Fe–Mg exchange reactions is small or is offset by other interactions in almandine-rich garnets. In either case, the data presented here indicate that correction for calcium content of garnets in the application of garnet-biotite geothermometry to high-grade metapelites is unnecessary and may lead to an overestimate of peak temperature.  相似文献   

8.
The elastic moduli of a single-crystal calcium oxide, CaO, are measured in the temperature range from 300 to 1200 K (1.8 times of the Debye temperature) by the resonant sphere technique (RST). The lowest 18 modes are identified in the frequency range from 0.6 to 1.4 MHz for the vibrating spherical specimen, which is 5.6564 mm in diameter and 3.3493 g/cm3 in density at room temperature, and the resonant frequencies are traced as a function of temperature. The adiabatic elastic moduli are determined in the present temperature range from the observed frequencies by inversion calculations. Most of the elastic moduli, except forC 12 modulus, decrease as temperature increases. The temperature curves ofC s andC 44 moduli cross at 372 K. This means that the CaO specimen has an isotropic elasticity at the temperature. The temperature derivatives (?C 11/?T) P and (?C s/?T) P become slightly less negative with temperature increase and (?C s /?T) P and (?C 44/?T) P are almost constant. Combining the present elastic data with thermal expansion and specimen heat capacity data of CaO, we present the temperature dependence of thermodynamic parameters important in the studies of earth's interior.  相似文献   

9.
 High-pressure and high-temperature Raman spectra of CaGeO3 tetragonal garnet have been collected to 11.5 GPa and 1225 K, respectively, in order to investigate possible intrinsic anharmonic behaviour in this phase. The Raman peak positions were observed to vary linearly with pressure and temperature within the ranges studied, with the higher-energy peaks showing larger P- and T-induced shifts than the low energy modes. The observed T-induced shifts are similar to those reported for grossular and andradite, while the observed P-induced shifts are generally larger than those of aluminosilicate and MgSiO3 majorite garnets (Gillet et al. 1992; Rauch et al. 1996) due to the larger bulk modulus of CaGeO3 garnet. The observed mode shifts of CaGeO3 garnet were used to determine the isothermal and isobaric mode Grüneisen parameters for this phase. These parameters are similar in value to those reported previously for grossular and andradite (Gillet et al. 1992). The calculated intrinsic anharmonic parameters, a i , for CaGeO3 garnet were determined to be nonzero, indicating significant anharmonic behaviour for this phase. These values, which range from −3.8 × 10−5 K−1 to −1.3 × 10−5 K−1, are also similar to those reported for andradite and grossular, but smaller than those determined for pyrope (Gillet et al. 1992). Hence, we expect MgSiO3 majorite to show greater anharmonicity than the germanate analogue studied by us. The anharmonic parameters determined for CaGeO3 tetragonal garnet may now be introduced into quasiharmonic vibrational heat capacity models to account for the observed anharmonic behaviour. Received: 21 April 1999 / Revised, accepted: 11 September 1999  相似文献   

10.
A series of basaltic compositions and compositions within the simple system CaO-MgO-FeO-Al2O3-SiO2 have been crystallized to garnetclinopyroxene bearing mineral assemblages in the range 24–30 kb pressure, 750°–1,300° C temperature. Microprobe analyses of coexisting garnet and clinopyroxene show that K D(Fe2+/MgG+/Fe2+/MgCpx) for the Fe-Mg exchange reaction between coexisting garnet and clinopyroxene is obviously dependent upon the Ca-content and apparently independent of the Mg/(Mg+Fe) content of the clinopyroxene and garnet. The Ca-effect is believed to be due to a combination of non-ideal Ca-Mg substitutions in the garnet and clinopyroxene. Our data and interpretation reconciles previous inconsistencies in the temperature dependence of K D ? values determined in experimental studies of simple systems, complex basalt, grospydite and garnet peridotite compositions. Previous differences between the effect of pressure upon K Das predicted from simple system theory (Banno, 1970), and that observed in experiments on multicomponent natural rock compositions (Råheim and Green, 1974a) can now be resolved. We have determined K Das a function of P, T, and X Gt Ca (grossular) and derived the empirical relation $$T\left( {^\circ {\text{K}}} \right) = \frac{{3104X_{{\text{Ca}}}^{{\text{Gt}}} + 3030 + 10.86P\left( {{\text{kb}}} \right)}}{{\ln K_{\text{D}} + 1.9034}}$$ . This empirical relationship has been applied to garnet-clinopyroxene bearing rocks from a wide range of geological environments. The geothermometer yields similar estimates for garnet-clinopyroxene equilibration for neighbouring rocks of different composition and different K Dvalues. In addition, temperature estimates using the above relationship are more consistent with independent temperature estimates based on other geothermometers than previous estimates which did not correct for the Ca-effect. An alternative approach to the above empirical geothermometer was attempted using regular solution models to derive Margules parameters for various solid solutions in garnets and clinopyroxenes. The derived Margules parameters are broadly consistent with those determined from binary solution studies, but caution must be exercised in interpreting them in terms of actual thermodynamic properties of the relevant crystalline solid solutions because of the assumptions which necessarily have to be made in this approach.  相似文献   

11.
 The hydrothermal reaction between grossular and 1 molar manganese chloride solution was studied at 2 kbar and 600 °C at various bulk Ca/(Ca+Mn) compositions: Ca3Al2Si3O12+3Mn2+(aq) ⇔ Mn3Al2Si3O12+3Ca2+(aq) The reaction products are garnets of the spessartine-grossular solid-solution series which discontinuously armour the dissolving grossular grains. The first garnet to crystallize is spessartine rich (X gt Mn≥0.95), reflecting the high Mn content of the solution, but as the reaction proceeds more calcium-rich garnets progressively overgrow the initial products. The armouring product layer is detached from the dissolving grossular, which allows the progressive overgrowth to occur on both its external and internal surfaces and results in the development of a two directional Ca/(Ca+Mn) zoning pattern in the product grains. The compositional changes in the run products are consistent with attainment of heterogeneous equilibrium between the external rims of the spessartine-grossular garnets and the bulk solutions in runs of duration ≥24 hours. Plots of ln KD versus X gt Ca maxima show linear variations that are not consistent with the ideal mixing that has been proposed for spessartine-grossular garnets at temperatures of 900 to 1200 °C. The data rather fit a regular solution model with the parameters Δ (600 °C, 2 kbar)=−8.0±0.8 kJ/mol and w gt CaMn=2.6±2.0 kJ/mol. Existing solubility measurements and thermodynamic data from other Ca and Mn silicates support the calculated data. Grossular activities calculated using the w gt CaMn parameter indicate that even in manganese-rich metapelites pressure estimates calculated using the garnet-plagioclase-Al2SiO5-quartz barometer will not be increased by more than 0.2 kbar. Received: 18 January 1995/Accepted: 4 June 1996  相似文献   

12.
The compression of synthetic pyrope Mg3Al2 (SiO4)3, almandine Fe3Al2(SiO4)3, spessartine Mn3Al2 (SiO4)3 grossular Ca3Al2(SiO4)3 and andradite Ca3Fe2 (SiO4)3 was studied by loading the crystals together in a diamond anvil cell. The unit-cell parameters were determined as a function of pressure by X-ray diffraction up to 15 GPa using neon as a pressure transmitting medium. The unit-cell parameters of pyrope and almandine were measured up to 33 and 21 GPa, respectively, using helium as a pressure medium. The bulk moduli, K T 0, and their first pressure derivatives, K T 0 , were simultaneously determined for all five garnets by fitting the volume data to a third order Birch-Murnaghan equation of state. Both parameters can be further constrained through a comparison of volume compressions between pairs of garnets, giving for K T 0 and K T 0 171(2) GPa and 4.4(2) for pyrope, 185(3) GPa and 4.2(3) for almandine, 189(1) GPa and 4.2 for spessartine, 175(1) GPa and 4.4 for grossular and 157(1) GPa and 5.1 for andradite, where the K T 0 are fixed in the case of spessartine, grossular and andradite. Direct comparisons of the unit-cell volumes determined at high pressures between pairs of garnets reveal anomalous compression behavior for Mg2+ in the 8-fold coordinated triangular dodecahedron in pyrope. This agrees with previous studies concerning the compression behaviors of Mg2+ in 6-fold coordinated polyhedra at high pressures. The results show that simple bulk modulus–volume systematics are not obeyed by garnets. Received: 29 July 1998 / Revised, accepted: 7 April 1999  相似文献   

13.
Partition coefficients for the rare earth elements (REE) Ce, Sm and Tm between coexisting garnets and hydrous liquids have been determined at high pressure and temperatures (30 kbar and 1300 and 1500°C). Two synthetic systems were studied, Mg3Al2Si3O12-H2O and Ca3Al2Si3O12-H2O, in addition to a natural pyrope-bearing system.Deviations from Henry's Law behaviour occur at geologically relevant REE concentrations. At concentrations < 3 ppm Ce, < 12 ppm Sm, < 80 ppm Tm in pyrope and < 100 ppm Ce, < 250 ppm Sm, < 1000 ppm Tm in grossular (at 30 kbar and 1300°C), Dgarnet liquidREE increases as the REE concentration in the garnet decreases. At higher concentrations, DREE is constant. Dgrossular liquidREE also constant when the garnet contains less than about 2 ppm Sm or Tm. The REE concentration at which DREE becomes constant increases with increasing temperature, decreasing REE ionic radius and increasing Ca content of the garnet.Partitioning behaviour of Ce, Sm and Tm between a natural pyrope-rich garnet and hydrous liquid is analogous to that in the synthetic systems and substantiates the substitution model proposed by Harrison and Wood (1980).Values of DREEgarnet/liquid for which Henry's Law is obeyed are systematically higher for grossular than for pyrope (Dpyrope/liquid = 0.067(Ce), 0.108(Sm), 0.155(Tm) and Dgrossular/Liquid = 0.65(Ce), 0.75(Sm), 4.55(Tm).The implications of non-Henry's Law partitioning of REE for models of basalt petrogenesis involving garnet are far-ranging. Deviations from Henry's Law permit refinements to be made to calculated REE abundances once basic model parameters have been defined.  相似文献   

14.
Garnetiferous basic granulites occur, as parts of hornblende-pyroxene- and pyroxene granulites, in a Precambrian terrain around Saltora. The chemistry of the garnetiferous basic granulites is broadly similar to that of the hornblende-pyroxene granulites, their immediate precursors, but in detail they have distinctly higher Fe/Mg ratios. The compositions of the major mafic silicates of the garnetiferous varieties do not reflect higher pressures of formation: the Jd/Ts ratios in calcic pyroxenes are similar to those from the non-garnetiferous varieties, and the pyrope contents of garnets are low. Exchange equilibrium in respect of major elements was established among the mafic silicates in spite of garnets being late overprints. The orthopyroxene — calcic pyroxene pairs from the garnetiferous granulites show lower values of K D(Mg-Fe) opx-cpx than those from the non-garnetiferous granulites, pointing to lower temperature of equilibration. The K D(Mg-Fe) opx-hbl K D(Mg-Fe) cpx-hbl relations show that the more magnesian triads equilibrated at lower temperatures; viewed against experimental data regarding the effect of Mg/Fe ratios on the appearance of garnets in basic rocks, formation of garnets by cooling is strongly indicated. Several intergrowth textures, especially garnet-ilmenite and garnet-quartz (±albite) symplectites, and modal relations argue in favour of composite reactions of the type hornblende+ quartz-→calcic pyroxene+garnet+albite+H2O, which couple hornblende breakdown reactions with orthopyroxene+anorthite→garnet reactions. The approximate range of pressure and temperature conditions, estimated from experimental data, are 6–8.5 kb and 750–830° C. Since garnets formed by cooling in iron-rich granulites, the garnetiferous granulites do not represent higher pressure subfacies of the granulite facies.  相似文献   

15.
Raman and infrared spectroscopic data at ambient and high pressures were used to compute the lattice contribution to the heat capacities and entropies of six endmember garnets: pyrope, almandine, spessartine, grossular, andradite and uvarovite. Electronic, configurational and magnetic contributions are obtained from comparing available calorimetric data to the computed lattice contributions. For garnets with entropy in excess of the computed lattice contribution, the overwhelming majority is found in the subambient temperature regime. At room temperature, the non-lattice entropy is approximately 11.5 J/mol-K for pyrope, 49 J/mol-K for almandine, and 19 J/mol-K for andradite. The non-lattice entropy for pyrope and some for almandine cannot be accounted for by magnetic or electronic contributions and is likely to be configurational in nature. Estimates of low temperature non-lattice entropies for both spessartine and uvarovite are made in absence of calorimetric measurements and are based on low temperature calorimetry of other minerals containing the Mn2+ and Cr3+ cations as well as on solid solution garnets containing these cations. The estimate for uvarovite non-lattice entropy is approximately 18 J/mol-K, while for spessartine, approximately 45 J/mol-K. Neither of these cations is expected to provide electronic contributions to the entropy. For both iron-bearing garnets, a small electronic or magnetic entropy contribution continues above ambient temperatures. High pressure data on pyrope, grossular and andradite permit calculation of the thermodynamic parameters at high pressures, which are important for computation of processes in the Earth’s mantle. Thermal expansion coefficients of these materials were found to be 1.6, 1.5, 1.6×10−5 K−1 at 298 K, respectively, using a Maxwell relation. These closely match the literature values at ambient conditions.  相似文献   

16.
P-V-T equations of state for the γ phase of Mg2SiO4 have been fitted to unit cell volumes measured under simultaneous high pressure (up 30 GPa) and high temperature (up to 700 K) conditions. The measurements were conducted in an externally heated diamond anvil cell using synchrotron x-ray diffraction. Neon was used as a pressure medium to provide a more hydrostatic pressure environment. The P-V-T data include 300 K-isothermal compression to 30 GPa, 700 K-compression to 25 GPa and some additional data in P-T space in the region 15 to 30 GPa and 300 to 700 K. The isothermal bulk modulus and its pressure derivative, determined from the isothermal compression data, are 182(3) GPa and 4.2(0.3) at T=300 K, and 171(4) GPa and 4.4(0.5) at T=700 K. Fitting all the P-V-T data to a high-temperature Murnaghan equation of state yields: K TO=182(3.0) GPa, K TO=4.0(0.3), ?K T /?T)0=?2.7(0.5)×10?2 GPa/K and (?2 K T /?P?T)0=5.5(5.2)×10?4/K at the ambient condition.  相似文献   

17.
Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids.Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr>99). Fe-rich garnets (Adr>90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of ΣREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show “typical” HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr>90) have much lower ΣREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism , whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular-andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions.Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.  相似文献   

18.
A suite of 11 gem-quality, optically completely clear garnet crystals with a broad variety of compositions in the space of the end members pyrope–almandine–spessartine–grossular–andradite–goldmanite were analyzed for trace amounts of “water” by nuclear reaction analysis, NRA, based on the reaction 1H(15N, αγ)12C, and by single-crystal absorption spectroscopy in the νOH vibrational range using microscope-FTIR-spectroscopic methods. The aim was to establish a calibration of the highly sensitive IR method with high areal resolution for “water” determination in garnets, by studying garnets of a wide compositional range, and to check for compositional dependencies of the integral molar absorptivities of the “water” component, ?int[1molH2O?1cm?2], in the nominally “water”-free garnets. The results of NRA show a broad variation of water contents in the range (14 ± 3) to (950 ± 80) wt ppmH2O, the values being low and very high for the garnet solid solutions (PyrAlm)SS and close-to-end-member GrossSS, respectively. There were no indications of inhomogeneities in the OH distribution, except possibly for one of the garnets (grossular, variety hessonite, from Tanzania). The quantitative evaluation of the complex νOH spectra, which showed similar shape only for members of the (PyrAlm)SS, yielded integral absorption coefficients, αint (cm?2), which allowed the calculation of integral molar absorptivities, ?int, using the “water” values of NRA. The ?int values obtained varied in a wide range but with no obvious correlation with the composition of the garnet except for the extremely high values, in the 104 range, of the two specimen with compositions close to end-member grossular. In all other garnets, ?int was in the 103 range with an average of ?int=3630±1580[1molH2O?1cm?2]. Therefore, this value is proposed for the use in routine “water” determinations of compositionally different garnets by the micro-IR method, except for garnets near to end-member grossular.  相似文献   

19.
Five distinct paragenetic, morphological and compositional types of grossular garnet (G1, G2, G3, G4, G5) were distinguished within the individual (sub)units of the zoned leucotonalitic pegmatite cutting serpentinized lherzolite with rodingite dikes at ??ár near Ruda nad Moravou, Staré Město Unit, Northern Moravia. Detailed study using Electron Microprobe Analysis, Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Cathodoluminiscence and Infrared Spectroscopy revealed distinct compositional trends in major, minor and trace elements. The contents of Fe3+, Mn, Mg and Ti increase from early garnet (G1) in the outermost grossular subunit through the interstitial garnet (G2) in the leucocratic subunit to graphic intergrowths of quartz+garnet (G3) in the coarse-grained unit. Then these constituents decrease in inclusions of garnet (G4) from the blocky unit and large crystals of garnet (G5) from the quartz core. Some trace elements (V, Ni, Y) exhibit the same trends, only Be evidently increases in garnet from border zone to the centre. Fluorine has negative correlation with Fe3+ as well as some trace elements (Ta, Pb). Concentrations of H2O in garnets, up to 0.22 wt.% H2O, are comparable with spessartine-almandine garnets from the Rutherford No. 2 pegmatite, Virginia, and grossular garnets from high-temperature calc-silicate rocks (skarns). Water contents correlate positively with Fe3+, but inversely with F. The use of water contents in garnet to elucidate the fluctuations of activity of H2O during the pegmatite formation is only limited; the incorporation of hydrous defects seems to be controlled instead by crystal-structural constraints. However, the sum of all volatile components (H2O + F) increases about twice from the outermost subunit to the centre of the pegmatite body.  相似文献   

20.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号