首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic moduli of single-crystal MgF2 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T=298?650° K. These new data are consistent with those obtained by other ultrasonic pulse techniques at and below room temperature and agree favourably with polycrystalline data above room temperature. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range with the curvature in the same sense for all the moduli. For the rutile-structure fluorides and oxides, evaluation of the temperature derivatives of the elastic moduli at constant volume indicates that the dominant temperature effect is extrinsic for (?K S /?T) P and intrinsic for (?μ/?T) P , where K S and μ are the isotropic bulk and shear moduli, respectively. There appears to be no simple relationship between (?c/?T) P and crystallographic parameters for the rutile structure, and |(?c/?T) P | for the fluorides is in general very much lower than the corresponding |(?c/?T) P | for the oxides. For the pair of compounds MgF2-TiO2, there is no evident analogue relationship for high-temperature elastic properties.  相似文献   

2.
The elastic moduli (c) of single crystal KMgF3 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T=298?550 K, and as a function of pressure from P=1 bar?2.5 kbar. Room temperature values of the elastic moduli and their temperature derivatives are consistent with Reshchikova's (1969) values. Comparison with the data for SrTiO3 indicates that, for most of the moduli, 1/c(?c/?T) P and (?c/?P) T are very similar for the fluoride-oxide analogue pair, KMgF3-SrTiO3. Values of (?c/?P) T for KMgF3 are calculated from a simple central force model using parameters determined for KF and are in good agreement with the measured values. The bulk sound velocity-mean atomic weight relationship, v ф M 1/2=constant, is well obeyed by the fluoroperovskites; comparison with the perovskite oxide data on a log-log plot of v ф versus M leads to a value of 70% for the relative effective charge of the oxides with respect to the fluorides.  相似文献   

3.
Using the rectangular parallelepiped resonance method we measured the temperature dependence of the adiabatic elastic moduli of single-crystal MgO over the temperature range 300–1800 K. The high temperature limit of our measurements extends by 500 K the upper limit over which elasticity data on MgO are now available. Although our measured temperature dependence of C ij s are generally in good agreement with previous measurements over a more narrow range in temperature, we found that C 44 s decreases more rapidly with temperature, for T > 1000 K, than previous studies suggest. We also found that each of the slopes (?C 11 s /?T)p, (?Ks/?T)p, and (C 44 s /?T)p become less negative with increasing temperature for T > 1400 K. From our measurements on elasticity we are able to confirm that the Grüneisen parameter at zero pressure is nearly constant with temperature up to 1800 K, with only a slight decrease above 1000 K. Utilizing our new data we present calculations showing the temperature dependence of thermodynamic parameters important in studies of earth's interior.  相似文献   

4.
We present new high temperature elasticity data on two grossular garnet specimens. One specimen is single-crystal, of nearly endmember grossular, the other is polycrystalline with about 22% molar andradite. Our data extend the high temperature regime for which any garnet elasticity data are available from 1000 to 1350 K and the compositional range of temperature data to near endmember grossular. We also present new data on the thermal expansivity of calcium-rich garnet. We find virtually no discernable differences in the temperatureT derivatives at ambient conditions of the isotropic bulkK S and shearμ moduli when comparing our results between these two specimens. These calcium-rich garnets have the lowest values of ¦(?K S /?T) P ¦ = (1.47,1.49) x 10-2GPa/K, and among the highest values of ¦(?μ/?T) P ¦ = 1.25 x 10-2GPa/K, when compared with other garnets. Small, but measurable, nonlinear temperature dependences of most of the elastic moduli are observed. Several dimensionless parameters are computed with the new data and used to illustrate the effects of different assumptions on elastic equations of state extra-polated to high temperatures. We discuss how dimensionless parameters and other systematic considerations can be useful in estimating the temperature dependence of some properties of garnet phases for which temperature data are not yet available. While we believe it is premature to quantitatively predict the temperature variation ofK S andμ for majorite garnets, our results have bearing on the amount of diopside required to explain the shear velocity gradients in Earth's transition zone.  相似文献   

5.
The Grüneisen ratio, γ, is defined as γy=αK TV/Cv. The volume dependence of γ(V) is solved for a wide range in temperature. The volume dependence of αK T is solved from the identity (? ln(αK T)/? ln V)Tδ T-K′. α is the thermal expansivity; K T is the bulk modulus; C V is specific heat; and δ Tand K′ are dimensionless thermoelastic constants. The approach is to find values of δ T and K′, each as functions of T and V. We also solve for q=(? ln γ/? ln V) where q=δ T -K′+ 1-(? ln C V/? ln V)T. Calculations are taken down to a compression of 0.6, thus covering all possible values pertaining to the earth's mantle, q=? ln γ/? ln V; δ T=? ln α/? ln V; and K′= (?K T/?P)T. New experimental information related to the volume dependence of δ T, q, K′ and C V was used. For MgO, as the compression, η=V/V 0, drops from 1.0 to 0.7 at 2000 K, the results show that q drops from 1.2 to about 0.8; δ T drops from 5.0 to 3.2; δ T becomes slightly less than K′; ? ln C V/? In V→0; and γ drops from 1.5 to about 1. These observations are all in accord with recent laboratory data, seismic observations, and theoretical results.  相似文献   

6.
High temperature elasticity of single crystal potassium chloride has been studied by the Rectangular Parallelepiped Resonance (RPR) method up to 870 K (? 3.8 times the Debye temperature, ?). The elastic stiffness moduli, C 11 and C 44, decrease linearly with temperature while C 12 increases slightly with temperature. The RPR method is particularly suited to measurements of elasticity at high temperatures, since no glues (which decompose at high temperature) are used to connect the transducers to a specimen. As a consequence, the measured spectrum closely approximates the theoretical spectrum of a specimen freely suspended in space with no external contact. The present elasticity data permits the investigation of the thermodynamic properties of potassium chloride far above the Debye temperature when used together with the previous zero-pressure data on thermal expansivity and heat capacity. The equation of state of potassium chloride is virtually unaffected by anharmonicity, even at T/?=3.8. One result is that the thermal pressure for KCl above the Debye temperature linearly increases with temperature. There is also small dependence on volume, in contrast to NaCl where there is no dependence on volume.  相似文献   

7.
This papers reviews elastic constant systematics. The bulk modulus of oxides and silicates is generally predictable on the basis of density and mean atomic weight. For constant mean atomic weight, \(\bar M\) , the bulk modulus is inversely proportional to the fourth power of the molar volume, regardless of whether molar volume changes due to temperature,T, pressure,P, or crystal structure. This iso- \(\bar M\) trend has the explanation that the Grüneisen parameter, (?K/?P) T , and ?(1/αK)(?K/?T) P , whereK is bulk modulus and α is volumetric thermal expansion, are approximately constant for most materials. For isostructural compounds, the bulk modulus is inversely proportional to the molar volume. This isostructural trend has the explanation that a certain combination of interatomic force parameters are the same for isostructural compounds. Equivalent iso- \(\bar M\) and isostructural trends are discussed for velocity versus density. Exceptions to the systematics exist.  相似文献   

8.
The nine adiabatic elastic stiffness constants of synthetic single-crystal fayalite, Fe2SiO4, were measured as functions of pressure (range, 0 to 1.0 GPa) and temperature (range, 0 to 40° C) using the pulse superposition ultrasonic method. Summary calculated results for a dense fayalite polycrystalline aggregate, based on the HS average of our single-crystal data, are as follows: Vp = 6.67 km/s; Vs = 3.39km/s; K= 127.9 GPa; μ = 50.3 GPa; (?K/?P)T = 5.2; (?μ/?P)T=1.5;(?K/?T)P= ?0.030 GPa/K;and,(?/?T)P =-0.013 GPa/K (the pressure and temperature data are referred to 25° C and 1 atm, respectively). Accuracy of the single-crystal results was maintained by numerous cross and redundancy checks. Compared to the single-crystal elastic properties of forsterite, Mg2SiO4, the fayalite stiffness constants, as well as their pressure derivatives, are lower for each of the on-diagonal (C ij for which i=j) values, and generally higher for the off-diagonal (C ij for which i≠j) data. As a result, the bulk moduli (K) and dK/dP for forsterite and fayalite are very similar, but the rigidity modulus (μ) and dμ/dP for polycrystalline fayalite are much lower than their forsterite counterparts. The bulk compression properties derived from this study are very consistent with the static-compression x-ray results of Yagi et al. (1975). The temperature dependence of the bulk modulus of fayalite is somewhat greater (in a negative sense) than that of forsterite. The rigidity dependencies are almost equivalent. Over the temperature range relevant to this study, the elastic property results are generally consistent with the data of Sumino (1978), which were obtained using the RPR technique. However, some of the compressional modes are clearly discrepant. The elastic constants of fayalite appear to be less consistent with a theoretical HCP model (Leibfried 1955) than forsterite, reflecting the more covalent character of the Fe-O bonding in the former.  相似文献   

9.
10.
P-V-T equations of state for the γ phase of Mg2SiO4 have been fitted to unit cell volumes measured under simultaneous high pressure (up 30 GPa) and high temperature (up to 700 K) conditions. The measurements were conducted in an externally heated diamond anvil cell using synchrotron x-ray diffraction. Neon was used as a pressure medium to provide a more hydrostatic pressure environment. The P-V-T data include 300 K-isothermal compression to 30 GPa, 700 K-compression to 25 GPa and some additional data in P-T space in the region 15 to 30 GPa and 300 to 700 K. The isothermal bulk modulus and its pressure derivative, determined from the isothermal compression data, are 182(3) GPa and 4.2(0.3) at T=300 K, and 171(4) GPa and 4.4(0.5) at T=700 K. Fitting all the P-V-T data to a high-temperature Murnaghan equation of state yields: K TO=182(3.0) GPa, K TO=4.0(0.3), ?K T /?T)0=?2.7(0.5)×10?2 GPa/K and (?2 K T /?P?T)0=5.5(5.2)×10?4/K at the ambient condition.  相似文献   

11.
The adiabatic single-crystal elastic constants, C ij , of stoichiometric magnesium aluminate spinel (MgAl2O4) have been measured up to 1273 K by highresolution Brillouin spectroscopy, using a 6-pass tandem Fabry-Pérot interferometer and an argon ion laser (514.5 nm). Two platelet samples were employed for probing the acoustic phonons along [100] and [110] directions by platelet and backscattering geometries. The measured temperature dependences of the elastic moduli show a distinct anomaly at 923 K in the shear modulus C s = (C11-C12)/2 (along [110] direction) and the longitudinal modulus C11 (along [100] direction). This anomaly is consistent with the order-disorder phase transition, resulting from the atomic exchange between Mg at the tetrahedral site and Al at the octahedral site, which has been well documented recently (Peterson et al. 1991; Millard et al. 1992) by neutron powder diffraction and 27Al magic-angle spinning NMR. The values of the temperature derivatives of v p , v s , and K s , in the temperature range 300–923 K, calculated by the Voigt-Reuss-Hill approximation are -0.40ms?1 K?1, -0.26ms?1 K?1, and -1.89 x 10?2GPaK?1.  相似文献   

12.
The elastic moduli of magnesioferrite spinel, MgFe2O4, and their temperature dependence have been determined for the first time by ultrasonic measurements on a polycrystalline specimen. The measurements were carried out at 300 MPa and to 700°C in a gas-medium high-pressure apparatus. On heating, both the elastic bulk (K S) and shear (G) moduli decrease linearly to 350°C. By combining with extant thermal-expansion data, the values for the room-temperature K S and G, and their temperature derivatives are as follows: K 0 = 176.3(7) GPa, G 0 = 80.1(2) GPa, (∂K S/∂T) P = −0.032(3) GPa K−1 and (∂G/∂T) P = −0.012(1) GPa K−1. Between 350 and 400°C, there are abrupt increases of 1.4% in both of the elastic moduli; these closely coincide with the magnetic Curie transition that was observed by thermal analyses at about 360°C.  相似文献   

13.
The ambient pressure elastic properties of single-crystal TiO2 rutile are reported from room temperature (RT) to 1800 K, extending by more than 1200 oK the maximum temperature for which rutile elasticity data are available. The magnitudes of the temperature derivatives decrease with increasing temperature for five of the six adiabatic elastic moduli (C ij ). At RT, we find (units, GPa): C 11=268(1); C 33=484(2); C 44=123.8(2); C 66=190.2(5); C 23=147(1); and C 12=175(1). The temperature derivatives (units, GPa K−1) at RT are: (∂C 11/∂T) P =−0.042(5); (∂C 33/∂T) P =−0.087(6); (∂C 44/∂T) P =−0.0187(2); (∂C 66/∂T) P =−0.067(2); (∂C 23/∂T) P =−0.025; and (∂C 12/∂T) P −0.048(5). The values for K S (adiabatic bulk modulus) and μ (isotropic shear modulus) and their temperature derivatives are K S =212(1) GPa; μ=113(1) GPa; (∂K S /∂T) P =−0.040(4) GPa K−1; and (∂μ/∂T) P =−0.018(1) GPa K−1. We calculate several dimensionless parameters over a large temperature range using our new data. The unusually high values for the Anderson-Gròneisen parameters at room temperature decrease with increasing temperature. At high T, however, these parameters are still well above those for most other oxides. We also find that for TiO2, anharmonicity, as evidenced by a non-zero value of [∂ln (K T )/∂lnV] T , is insignificant at high T, implying that for the TiO2 analogue of stishovite, thermal pressure is independent of volume (or pressure). Systematic relations indicate that ∂2 K S /∂TP is as high as 7×10−4 K−1 for rutile, whereas ∂2μ/∂TP is an order of magnitude less. Received: 19 September 1997 / Revised, accepted: 27 February 1998  相似文献   

14.
The pressure dependence of the Raman spectrum of forsterite was measured over its entire frequency range to over 200 kbar. The shifts of the Raman modes were used to calculate the pressure dependence of the heat capacity, C v, and entropy, S, by using statistical thermodynamics of the lattice vibrations. Using the pressure dependence of C v and other previously measured thermodynamic parameters, the thermal expansion coefficient, α, at room temperature was calculated from α = K S (?T/?P) S C V/TVK T, which yields a constant value of (? ln α/? ln V)T= 6.1(5) for forsterite to 10% compression. This value is in agreement with (? ln α/? ln V)T for a large variety of materials. At 91 kbar, the compression mechanism of the forsterite lattice abruptly changes causing a strong decrease of the pressure derivative of 6 Raman modes accompanied by large reductions in the intensities of all of the modes. This observation is in agreement with single crystal x-ray diffraction studies to 150 kbar and is interpreted as a second order phase transition.  相似文献   

15.
Fluids at crustal pressures and temperatures   总被引:1,自引:0,他引:1  
  相似文献   

16.
The single crystal elastic constants of nonmetamict zircons have been measured as a function of pressure to 12 kb at room temperature and also as a function of temperature between 25 and 300° C at atmospheric pressure. The pressure derivatives of the elastic constants are: C 11=10.78, C 33=5.88, C 44=0.99, C 66=?0.31, C 12=3.24, C 13=6.20. The anomalous negative behaviour of C 66 versus pressure could be associated with a high pressure phase transition. The pressure and temperature derivatives of the isotropic elastic wave velocities and elastic moduli for nonmetamict zircon are calculated from the present single crystal data by the Voigt, Ruess, and Hill approximations and compared with the values of some other oxides and silicates. The pressure derivative of the isotropic adiabatic bulk modulus is relatively high (dK S/dP=6.50), and the pressure derivative of the shear modulus is relatively low, (dG/dP=0.78), compared to the corresponding values for some other oxides and silicates. The Debye temperature, ?D, and the high temperature limit of the Grüneisen parameter, γHt, calculated from the elastic constants and their pressure derivatives, agrees well with the Debye temperature and the thermal Grüneisen parameter, γth, calculated from the thermal expansion, heat capacity, and compressibility data.  相似文献   

17.
The thirteen single-crystal elastic moduli for diopside as determined by the acoustic technique based on Brillouin scattering are: c11=2.23, c22=1.71, c33=2.35, c44=0.74, c55=0.67, c66=0.66, c12=0.77, c13=0.81, c15=0.17, c23=0.57, c25=0.07, c35=0.43, c46=0.073. The Reuss bound of the adiabatic bulk and shear moduli calculated from these data are K s=1.08 Mbar and G=0.651 Mbar. The room-pressure isothermal bulk modulus, K T , and the pressure derivative of the bulk modulus, K′ T have also been determined on a four-circle diffractometer, from a single crystal mounted in a gasketed opposed-anvil diamond cell, giving values of K T =1.13 Mbar and K′ T =4.8. The principal axes of the strain ellipsoid, calculated from the elastic moduli and observed in the static compression data, are identical, and the linear compressibilities are in reasonable agreement. The single-crystal elastic moduli can be correlated with the structural features of diopside.  相似文献   

18.
19.
The α − β transition of quartz was successfully observed with using a single sample by means of the rectangular parallelepiped resonance (RPR) method. An oriented rectangular parallelepiped of α-quartz single crystal was prepared and the resonant frequencies of 30–11 vibrational modes were measured from room temperature to 700°C. The softening of quartz crystal was observed as the significant reduction of resonant frequencies near the α–β transition. The present study is the first application of the RPR method to the study of phase transition. The complete set of elastic constants of α- and β-quartz were determined as a function of temperature by the least-squares inversion of the measured frequency data obtained by a single run. This is a merit yielded by the RPR method. It is shown near the α − β transition in both α- and β-quartz that the elastic parameters decrease proportionally to |TT 0|n , where T is temperature and T 0 is the transition temperature, 573.0°C for α-quartz and 574.3°C for β-quartz. It was also seen that linear incompressibilities K 1 = (C 11 +C 12 +C 13)/3 and K 3 = (C 33 +2C 13)/3 decrease rapidly toward the transition, whereas, shear moduli C 44, C S1 = (C 11 +C 33 -2C 13)/4 and C S3 = (C 11 -C 12)/2 = C 66 decrease only slightly. The shear modulus C S3 = C 66 increased slightly in α-quartz. The elastic properties of isotropic aggregate of quartz were calculated, and it is shown that the longitudinal wave velocity significantly decreases at the α − β transition, whereas, the shear wave velocity decreases only slightly.  相似文献   

20.
Abstract: Raman frequency of some materials, including minerals, molecules and ions, shifts systematically with changing pressure and temperature. This property is often used as a pressure gauge in high pressure experiments with the hydrothermal diamond anvil cell (HDAC). Since the system of fluid inclusion is similar to that of HDAC, it can also be used to determine the internal pressure of fluid inclusions. Sphalerite is a common daughter mineral. In this study, the frequency shift of the 350 cm?1 peak of sphalerite has been studied from 296 to 523 K and from 0.07 to 2.00 GPa using the HDAC. The global slope of the isotherms (?n350/?p)T is 0.0048 in the studied pressure range. No significant variation of the slopes with temperature has been observed. The correlation between the frequency shift of the 350 cm?1 peak of sphalerite and pressure and temperature is constrained as P=208.33(?np)350+3.13T?943.75. This relationship may be used to estimate the internal pressure of the sphalerite-bearing fluid inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号