首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improved regional and interregional stratigraphic correlations of Pennsylvanian strata permit comparisons of vegetational changes in Euramerican coal swamps. The coal-swamp vegetation is known directly from in situ coal-ball peat deposits from more than 65 coals in the United States and Europe. Interpretations of coal-swamp floras on the basis of coal-ball peat studies are extended to broader regional and stratigraphic patterns by use of coal palynology. Objectives of the quantitative analyses of the vegetation in relation to coal are to determine the botanical constituents at the peat stage and their environmental implications for plant growth and peat accumulation. Morphological and paleoecological analyses provide a basis for deducing freshwater regimes of coal swamps.Changes in composition of Pennsylvanian coal-swamp vegetation are quire similar from one paralic coal region to another and show synchrony that is attributable to climate. Paleobotany and paleogeography of the Euramerican province indicate a moist tropical paleoclimate. Rainfall, runoff and evapotranspiration were the variable climatic controls in the distribution of coal-swamp vegetation, peat accumulation and coal resources. In relative terms of climatic wetness the Pennsylvanian Period is divisible into five intervals, which include two relatively drier intervals that developed during the Lower-Middle and Middle-Upper Pennsylvanian transitions. The climate during Early Pennsylvanian time was moderately wet and the median in moisture availability. Early Middle Pennsylvanian was drier, probably seasonally dry-wet; late Middle Pennsylvanian was the wettest in the Midcontinent; early Late Pennsylvanian was the driest; and late Late Pennsylvanian was probably the wettest in the Dunkard Basin. The five climatic intervals represent a general means of dividing coal resources within each region into groups with similar botanical constituents and environments of peat accumulation. Regional differences in basinal geology and climate were significant variables, but the synchronous control of paleoclimate was of primary importance.  相似文献   

2.
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal.The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal.A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1–2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays.  相似文献   

3.
During the Pennsylvanian, formation of coal was a phenomenon that was spread over many continents. It is the aim of this paper to illustrate factors that led to the formation of coal seams in paralic clastic sedimentary environments in the Ruhr Basin (German Variscan foreland) during the Pennsylvanian in terms of sequence stratigraphy and the structural evolution of the basin. Lithostratigraphic sections from exploration wells in the currently explored zone of the coal basin allowed the generation of volumetric lithofacies models, using geostastical methods. These models support the analysis of sedimentary facies and a sequence stratigraphic interpretation of the successions that are widely correlated throughout the basin. We then evaluate the relation of the sequence stratigraphic elements derived from the facies models with the abundance of coal seams.  相似文献   

4.
Fossil plant compressions and impressions are abundantly associated with coals of Mississippian and Pennsylvanian age in the central Appalachians, Illinois Basin, and elsewhere in the United States. Remains of the aerial plant parts occur most commonly in shale directly overlying coal, especially in the vicinity of contemporaneous paleochannels. Most roots and a few stumps are found preserved in situ; however, most aerial plant fossils were transported prior to burial. There is good evidence that fossil plants preserved in roof shales are mostly the same types of plants from which the coal formed. Mississippian coal floras are lower in diversity than later ones. Quantitatively important plants include only 2 lycopod genera, 1 arthrophyte genus, 1 fern genus, and 5 seed fern genera. Pennsylvanian floras, on the other hand, include abundant representatives of 5 lycopod genera, 2 arthrophyte genera, 4 fern genera, 5 seed fern genera, and 1 coniferophytic genus. The swamp floras were never in equilibrium, though change appears to have been particulary rapid near the boundary between the Mississippian and the Pennsylvanian.  相似文献   

5.
West Virginia is the only place in the United States where an entire section of Pennsylvanian age (Upper Carboniferous) strata can be seen. These strata occur within a wedge of rock that thins to the north and west from the southeastern part of the State. The progressive north-northwesterly termination of older Pennsylvanian geologic units beneath younger ones prominently outlines the center of the Appalachian basin of West Virginia. Over most of West Virginia, Lower and/or Middle Pennsylvanian strata unconformably overly Upper Mississippian (Lower Carboniferous) strata. Sediment deposition was accomplished by a complex system of deltas prograding north and west from an eastern and southeastern source area.More than 100 named coal beds occur within the Lower, Middle, and Upper Pennsylvanian rocks of West Virginia and at least 60 of these have been or are currently being mined commercially. Collectively, these coal beds account for original in-ground coal resources of almost 106.1×109 t (117×109 tons). West Virginia ranks fourth in the United States in demonstrated coal reserves. In 1988, West Virginia produced 131.4×106 t (144.9×106 T) of coal, third highest in the United States. Of this annual production, 75% was from underground mines. In 1988, West Virginia led the nation in the number of longwall mining sections currently in place. West Virginia's low-volatile coal beds are known worldwide as important metallurgical-grade coals, while the higher-volatile coal beds are utilized primarily for steam production.  相似文献   

6.
In the Cumberland Plateaus of southeastern Tennessee, northwestern Georgia, and northeast Alabama, Pennsylvanian strata are siliciclastics containing discontinuous coal seams. Above some of these coal seams, the shale deposits contain fossils of marine or brackish fauna. The entire sequence was deposited in an asymmetric foreland basin and is thickest in the southeast. Within this general trend there are locally thick deposits of lowermost Pennsylvanian Gizzard Group sequences that mark subbasins. Conglomeratic sandstone members of the Gizzard Group are discontinuous and tend to be thicker in the subbasins. In contrast, conglomeratic to sandy units are more laterally continuous in the overlying Crab Orchard Mountains Group. The Pennsylvanian sequence overlies paleosols with subjacent freshwater-neomorphosed shallow marine carbonates, or siliciclastics of the uppermost Mississippian Pennington Formation.A provenance discrimination diagram indicates that Pennsylvanian siliciclastics were derived from an orogenic source. Profile analysis of thick quartzose sandstone sequences indicates facies, architectural elements and bounding surfaces characteristic of braided stream deposits. A dominant southwest paleoflow direction is inferred from paleocurrent indicators in sandy braided and meandering stream deposits.  相似文献   

7.
Fossil spores and pollen have long been recognized as valuable tools for identifying and correlating coal beds. This paper describes the palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin with emphasis on forms that assist both intra- and interbasinal coal bed correlation.Stratigraphically important palynomorphs that originate in late Middle Pennsylvanian strata include Torispora securis, Murospora kosankei, Triquitrites minutus, Cadiospora magna, Mooreisporites inusitatus, and Schopfites dimorphus. Taxa that terminate in the late Middle Pennsylvanian include Radiizonates difformis, Densosporites annulatus, Dictyotriletes bireticulatus, Vestispora magna, and Savitrisporites nux. Species of Lycospora, Cirratriradites, Vestispora, and Thymospora, as well as Granasporites medius, Triquitrites sculptilis, and T. securis end their respective ranges slightly higher, in earliest Late Pennsylvanian age strata.Late Middle Pennsylvanian and earliest Late Pennsylvanian strata in the Appalachian Basin correlate with the Radiizonates difformis (RD), Mooreisporites inusitatus (MI), Schopfites colchesterensisS. dimorphus (CP), and Lycospora granulataGranasporites medius (GM) spore assemblage zones of the Eastern Interior, or Illinois Basin. In the Western Interior Basin, these strata correlate with the middle-upper portion of the Torispora securisLaevigatosporites globosus (SG) and lower half of the Thymospora pseudothiesseniiSchopfites dimorphus (PD) assemblage zones. In western Europe, late Middle Pennsylvanian and earliest Late Pennsylvanian strata correlate with the middle-upper portion of the Torispora securisT. laevigata (SL) and the middle part of the Thymospora obscuraT. thiessenii (OT) spore assemblage zones. Allegheny Formation coal beds also correlate with the Torispora securis (X) and Thymospora obscura (XI) spore assemblages, which were developed for coal beds in Great Britain.  相似文献   

8.
Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants.Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial–interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance–diversity composition of the older coals, presaging patterns of tree–fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals.  相似文献   

9.
Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations.  相似文献   

10.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

11.
《Earth》2008,86(3-4):85-116
Wetland plant communities persisted though much of the Pennsylvanian in Euramerica and are the dominant coal forming vegetation in this region. Distribution of these floras show a dramatic decline at the end of the Carboniferous with many of the plant genera and species becoming extinct by the onset of the Permian. This has been correlated with climate change and in particular aridification associated with northwards plate motion and Euramerica moving into the doldrums, but is also associated with the Variscan orogeny and forefront destroying large areas of formerly lowland basinal settings. Other factors may include Pennsylvanian glaciations as evidenced by cyclothem and rhythmical deposition in lowlying wetland settings, and change in eustatic base level. Evidence from Euramerica demonstrates extinction of this kind of wetland biota by the earliest Permian and the development of drier floras including conifer dominated assemblages. However, new data from other parts of the world, most notably North China, confirm this model and highlight the presence of similar coal swamps ranging from the Late Pennsylvanian through the Permian. In this paper we summarise and synthesize recent taxonomic and systematic investigations undertaken on the plant fossils from the Pennsylvanian Benxi Formation – the oldest recognised wetland plant community in China – and the Early Permian Taiyuan Formation – the best preserved wetland plant community from China. Results indicate a remarkable similarity of the Pennsylvanian–Early Permian floras of North China with the older assemblages in the Pennsylvanian of Euramerica, and the presence of typical ‘Euramerican’ coal swamp plant families, genera and in some cases species in China. Conclusions include the presence of the Ameriosinian phytogeographical realm uniting Euramerica and northern Cathaysia at this time, coal swamps in the Permian of North China evolving from a ‘Euramerican’ origin, and the dramatic floral turnover at the end of the Carboniferous representing a regional event rather than a global extinction episode. Patterns of plant distribution through this interval have profound implications on established palaeogeographical models and support continental connection between Euramerica and Cathaysia before the end of the Carboniferous, contradicting ideas of Cathaysian island biogeography and biotic distinction. Continental connection appears to be related to glacial eustatic low-stand and previously shallow marine environments becoming vegetated. Also important is the fact that in both Euramerica and North China the pattern of floristic demise within wetland plant communities are similar to each other, implying the same causal mechanisms, with plants occupying waterlogged positions being the most severely devastated. However, ecosystem demise occurred at the end of the Carboniferous in Euramerica and in the middle Permian in North China, but in both cases the primary cause was climate change.  相似文献   

12.
发育于法国Cevennes聚煤盆地北坳区斯蒂芬期(Stephanian)同沉积断层在空间上局部控制了碎屑体及煤层的形态、厚度,且在时间上完成了构造反转。盆缘断层控制了盆地自身的几何形态及其岩相古地理格局,它们的活动性及强度的差异致使盆地沉降或沉积中心、富煤带的侧向迁移,使盆地整体的构造格架发生了由半地堑-地堑-新形式的半地堑的转化。在不同的演化时期,盆地钎特的沉积、充填作用对构造的活动与演化给予了  相似文献   

13.
The Danville Coal Member (Dugger Formation, upper Desmoinesian, Pennsylvanian) is a significant economic coal resource in the Illinois Basin, central USA. Deposition of the Danville Coal (peat) was in coastal environments, varying distances from the coastline and, in turn, variable influences from saline waters. The purpose of this study is to examine the coal quality and petrography of the Danville Coal; and to discuss their relationship with depositional environment as it relates to the final coal product. A medium sulfur (1.0–1.5 wt.%) Danville Coal reserve area (northern Indiana coalfield) was compared to a low sulfur (<1.0 wt.%) Danville Coal (central Indiana coalfield) reserve area, the two being approximately 70 km apart. The medium sulfur coal resulted from the peat being deposited in a near-marine environment less protected from the influence of saline waters, whereas the low sulfur coal resulted from fine-grained, clay-dominated sediment protecting the peat from the direct influence of saline waters. Within both areas, the coal quality, coal composition, and trace element concentrations vary as a function of the proximity of the coal to the overlying Busseron Sandstone Member (Pennsylvanian). Where the Busseron Sandstone rests near or directly on the coal, the sulfur content is significantly higher in the top third of the seam. Conversely, where there is a thick section (>3 m) of finer-grained clastic sediments atop the Danville, the sulfur and trace elements contents are significantly lower.  相似文献   

14.
The coalification pattern of the Pittsburgh coal as established by isoreflectance contours has an overall trend which intersect with the prevailing structural trend of the Dunkard basin. Reflectance values increase from 0.53% in southeastern Ohio to 1.57% in the Maryland panhandle. Divergences of the reflectance contour pattern from the overall trend coincide in part with the present areas of high geothermal gradient. Crustal radiogenic heat, or regional geothermal heating, was probably the dominant heat source responsible for the coalification of the Pittsburgh coal in the Dunkard basin.A time-temperature, Lopatin-type diagram, which was constructed for the Dunkard basin near Wheeling, West Virginia, delineates conditions on maturation of sediments and provides clues to the times of petroleum migration and to the possible source beds. Silurian strata matured during subsidence and burial prior to the orogeny. The Mississippian and Pennsylvanian strata matured during or after the orogeny. The Pennsylvanian strata west of the Dunkard basin, as suggested by vitrinite reflectance values, are apparently still immature.  相似文献   

15.
Pennsylvanian strata of the Hazard coalfield, Eastern Kentucky, contain fluvial, upper-delta plain facies characterized by thick localized coals, bay-fill shales, levee silt- and sandstones, and channel-fill sands and gravels. Although the deltaic nature of these sediments has long been established, mining and exploration activities in the district require a thorough understanding of small areas within the delta environment. Coal quantity and quality trends in the Hazard #7 seam, the major producer in the area, have been examined in detail.The #7 coal accumulated in a peat swamp restricted laterally by a major fluvial channel. Three types of non-coal parting are recognized. Thin, tabular, fine-grained partings resulted from periods of increased terrigenous influx into the swamp. Lenticular crevasse-splay deposits locally split the coal. Wedge-shaped, fine- to coarse-grained partings, of probable levee origin, are found along the channel margin. Post-swamp deposits consist of thick bay-fill shales, thin shales, silt- and sandstones deposited on floodplains, and channel-fill sandstones and gravels.The modeling technique discussed provides guidance for mine development and regional exploration by prediction of coal seam quantity and quality trends from local geologic features. The thickest #7 coal is split by thin tabular partings and is overlain by thick shale sequences. Coal overlain by silt and sandstone is thinner and unsplit, and typically of higher heat value. Regional seam thinning due to channel scour is recognized. Factors which control the configuration of the coal seam include position within the peat swamp, proximity to the fluvial channel, swamp burial processes, and paleochannel sinuosity.  相似文献   

16.
Coal production has been an important economic factor in the Central Appalachian Basin. However, regional stratigraphic and structural relationships of the coal-bearing rocks of the basin have been poorly understood due to numerous separate nomenclatural schemes employed by various states. In order to estimate coal resources and understand mechanisms controlling the distribution of coal within the basin, a reliable geologic framework is necessary. Seven detailed cross sections across the Central Appalachian Basin were constructed in order to examine the stratigraphic and structural framework of the coal-bearing rocks in the basin. The cross sections were based on more than 1000 oil and gas well logs, measured sections, and borehole information from Kentucky, Ohio, Tennessee, Virginia and West Virginia.The cross sections revealed three main points discussed here: southeast thickening of the Pennsylvanian strata, uncomfortable northwestward onlapping relationship of Lower Pennsylvanian strata over underlying Lower Pennsylvanian and Mississippian strata and regional continuity of beds. The cross sections, geologic mapping, coal-resource studies, extensive new highway exposures and the occurrence of tonstein beds indicate that many coal beds and marine strata are laterally extensive, albeit locally variable across the basin. Certain quartzose sandstone bodies are also extensive over large areas of the basin.Existing stratigraphic nomenclature schemes obscured the geologic framework of the basin, so a new unified nomenclature scheme was devised to better describe stratigraphic features of the basin. The new stratigraphic nomenclature, now only formalized for Kentucky, was based on key stratigraphic units that proved to be extensive across the basin. Lower and Middle Pennsylvanian rocks are now recognized as the Breathitt Group (the Breathitt Formation was elevated to group rank). The Breathitt Group was subdivided into eight coal-bearing formations by relatively thick marine strata, and, in the lower part of the Breathitt Group, by quartzose sandstone formations. The new coal-bearing units are formally ranked as formations and, in ascending order, are the Pocahontas, Bottom Creek, Alvy Creek, Grundy, Pikeville, Hyden, Four Corners and Princess Formations. The quartzose sandstone units are also formally ranked as formations and are, in ascending order, the Warren Point, Sewanee, Bee Rock and Corbin Sandstones. The sandstone formations were previously recognized units in some states, but have been extended (formally in Kentucky) across the basin. The key stratigraphic marine units are formally ranked as members, and are, in ascending order, the Betsie Shale Member, the Kendrick Shale Member, Magoffin Member and Stoney Fork Member.  相似文献   

17.
Displays of artificial geological artefacts may be accurate, but not always. Examination of restorations of Coal Measure (Upper Carboniferous, Pennsylvanian) strata in two public displays shows how standards vary. In Crystal Palace Park, London (opened 1854), Coal Measures are accurately displayed and explained in detail. These beds are faulted, and associated features such as nodular mudrocks are displayed, although the density of nodules may be inaccurate. In contrast, in the Dutch National Railway Museum, Het Spoorwegmuseum, Utrecht, the Netherlands (reopened 2005), the portrayal of Pennsylvanian strata (sandstones?) of north‐east England gives them a uniform colour and poor bedding. Although there is a reconstruction of part of a coal mine, coal(?) forms lenses, not beds, and is the same brown hue as the sandstone. Museums and theme parks need to pursue the expertise of knowledgeable local geologists if they are to accurately model geological phenomena.  相似文献   

18.
《Applied Geochemistry》1997,12(3):281-289
The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends.The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.  相似文献   

19.
The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism.  相似文献   

20.
美国中部伊利诺伊煤田(跨伊利诺伊、印第安纳、肯塔基等三个州)的含煤地层为上石炭统宾夕法尼亚系。美国印第安纳地质研究所2006年编制的印第安纳州基岩综合地层柱状图建立了宾夕法尼亚系含煤地层的岩相层序,现将此岩相层序介绍到国内,对我们了解美国晚古生代煤田地质及阅读国外文献资料颇有帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号