首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
    
Magnetic null points can develop near the ergosphere boundary of a rotating black hole through the combined effects of strong gravitational field and the frame‐dragging mechanism. The electric component does not vanish in the magnetic null, and an efficient process or particle acceleration can occur. The situation is relevant to starving (low‐accretion‐rate, such as the Milky Way's supermassive black hole [SMBH]) nuclei of some galaxies that exhibit only episodic accretion events. The presence of the magnetic field of external origin is an important aspect. We propose that such conditions can develop when a magnetized neutron star approaches the SMBH during late stages of its inspiral motion. The field lines of the neutron star dipole thread the black hole's event horizon and rapidly change their connectivity. We compare the case of a dipole‐type magnetic field of a sinking and orbiting star near a nonrotating black hole and the near‐horizon structure of an asymptotically uniform magnetic field of a distant source near a fast‐rotating black hole. Although the two cases are qualitatively different from each other, they both develop magnetically neutral null points near the event horizon.  相似文献   

2.
The structure and magnitude of the electromagnetic field produced by a rotating accretion disk around a black hole were determined. The disk matter is assumed to be a magnetized plasma with a frozenin poloidal magnetic field. The vacuum approximation is used outside the disk.  相似文献   

3.
观测表明, 黑洞双星的B型准周期振荡(Quasi-Periodic Oscillation, QPO)频率与幂律通量之间存在正相关性. 试图基于阿尔文波振荡模型定量解释该相关性. 标准薄吸积盘辐射通量极大值处的阿尔文波振荡产生QPO. 标准薄盘上的软光子与冕或喷流基部的热电子介质发生逆康普顿散射产生幂律通量. 通过吸积率的连续变化, 得到QPO频率与幂律通量关系的分析解和数值解. 模拟得到的相关性在合理的参数范围内与观测值相吻合. QPO频率与幂律通量的正相关性可以理解为, 较强的磁场导致较高的阿尔文波频率和较高的电子温度从而得到较高的幂律通量. 结果表明B型QPO可能与吸积盘或喷流中的环向磁场的活动有关.  相似文献   

4.
High-frequency quasi-periodic variations (HF QPOs) in the X-ray light curves of black hole X-ray novae can be understood as oscillations of the accretion disk in a nonlinear 3:2 resonance. An m = 0 vertical oscillation near a black hole modulates the X-ray emission through gravitational lensing (light-bending) at the source. Certain oscillations of the accretion disk will also modulate the mass accretion rate, and in neutron-star systems this would lead to nearly periodic variations in brightness of the luminous boundary layer on the stellar surface – the amplitude of the neutron-star HF QPOs would be thus increased relative to the black hole systems. The “kHz QPOs” in black holes are in the hecto-Hz range.  相似文献   

5.
The current paradigm of high energy spectroscopy tells us that light emitted from a wide variety of objects has its origin close to the black hole event horizon. As such, these photons are subject to general relativistic effects such as light-bending, gravitational lensing and redshift, time-dilation, etc. These gravitational effects are well-understood from a theoretical standpoint and therefore, provide a natural mechanism to test the properties of strong gravitational fields. To this end, we have developed a new (semi-analytic) strong gravity code, capable of describing the contribution of photons that perform multiple orbits of the hole. We apply this code to a simple Keplerian accretion disk in order to understand the role played by the angular emissivity, black hole spin and higher order images in forming the line profile.  相似文献   

6.
7.
    
We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.  相似文献   

8.
    
We study the effects of large‐scale magnetic fields on the dynamics of charged particles near a rotating black hole. We consider a scenario in which the initially neutral particles on geodesic orbits in the equatorial plane become ionized, and hence they are destabilized by the charging process. Fraction of charged particles are then accelerated out of the equatorial plane and then follow jet‐like trajectories with relativistic velocities. We explore nonaxisymmetric systems in which the magnetic field is inclined with respect to the black hole spin. We study the system numerically in order to locate the zones of escaping trajectories and compute the terminal escape velocity. By breaking the axial symmetry, we notice increasing fraction of unbound orbits which allow for acceleration to ultrarelativistic velocities.  相似文献   

9.
    
In this paper I propose that the inner part of a black hole accretion inflow (< 100 rg) may enter a magnetically dominated, magnetosphere-like phase in which the strong, well-ordered fields play a more important role than weak, turbulent fields. In the low/hard state this flow is interior to the standard ADAF usually invoked to explain the observed hot, optically thin emission. Preliminary solutions for these new MDAFs are presented. Time-dependent X-ray and radio observations give considerable insight into these processes, and a new interpretation of the X-ray power spectrum (as arising from many disk radii) may be in order. While an evaporative ADAF model explains the noise power above 0.01 Hz, an inner MDAF is needed to explain the high-frequency cutoff near 1 Hz, the presence of a QPO, and the production of a jet. The MDAF scenario also is consistent with the phenomonological models presented at this meeting by several authors.  相似文献   

10.
    
We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford–Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.  相似文献   

11.
In this paper we model the gravitational wave emission of a freely precessing neutron star. The aim is to estimate likely source strengths, as a guide for gravitational wave astronomers searching for such signals. We model the star as a partly elastic, partly fluid body with quadrupolar deformations of its moment of inertia tensor. The angular amplitude of the free precession is limited by the finite breaking strain of the star's crust. The effect of internal dissipation on the star is important, with the precession angle being rapidly damped in the case of a star with an oblate deformation. We then go on to study detailed scenarios where free precession is created and/or maintained by some astrophysical mechanism. We consider the effects of accretion torques, electromagnetic torques, glitches and stellar encounters. We find that the mechanisms considered are either too weak to lead to a signal detectable by an Advanced LIGO interferometer, or occur too infrequently to give a reasonable event rate. We therefore conclude that, using our stellar model at least, free precession is not a good candidate for detection by the forthcoming laser interferometers.  相似文献   

12.
We investigate the properties of an axisymmetric gas flow without angular momentum onto a small compact object, in particular, on a Schwarzschild black hole in the supersonic region; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we show that the streamlines intersect (i.e., a caustic is formed) on the symmetry axis at a certain distance r x from the center on the front side if the pressure is ignored. The characteristic radial size of the region in which the streamlines emerging from the sonic surface at an angle no larger than θ0 to the axis intersect is Δr = r x θ 0 2 /3. To refine the flow structure in this region, we have numerically computed the system without ignoring the pressure in the adiabatic approximation. We have estimated the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.  相似文献   

13.
The galactic black hole binary systems give an observational template showing how the accretion flow changes as a function of increasing mass accretion rate, or L/LEdd. These data can be synthesised with theoretical models of the accretion flow to give a coherent picture of accretion in strong gravity, in which the major hard-soft spectral transition is triggered by a change in the nature and geometry of the inner accretion flow from a hot, optically thin plasma to a cool, optically thick accretion disc. However, a straightforward application of these models to AGN gives clear discrepancies in overall spectral shape. Either the underlying accretion model is wrong, despite its success in describing the Galactic systems and/or there is additional physics which breaks the simple scaling from stellar to supermassive black holes.  相似文献   

14.
    
A geometrically thin, energy accumulating $aL-disk is suggested which orbits a Kerr black hole. With increasing internal forces, the “standard” disks develop into energy accumulating disks. These accumulating disks are geometrically thin as long as their internal forces remain below a certain bound, allowing nearly geodesic orbits.  相似文献   

15.
16.
    
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi‐analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha‐viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha‐accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The equations governing general relativistic, spherically symmetric, hydrodynamic accretion of polytropic fluid on to black holes are solved in the Schwarzschild metric to investigate some of the transonic properties of the flow. Only stationary solutions are discussed. For such accretion, it has been shown that real physical sonic points may form even for flow with   γ <4/3  or   γ >5/3  . The behaviour of some flow variables in the close vicinity of the event horizon is studied as a function of specific energy and the polytropic index of the flow.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号