首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The Russian Federation has many aquifers and these possess a wide range of chemical compositions. In Russia about 300 mineral water sources have been developed as spas and health resorts. More than 150 of them produce bottled mineral water. A brief historical revue is given. The study of mineral waters in Russia began as far back as the reign of Peter the Great (1682–1725). It has been prolonged by works of many Russian scientists. The details of the chemical composition of the different types of Russian mineral waters and some geological aquifer peculiarities are described. The most widely used classification of mineral waters in Russia is presented. The present condition of these waters and the government standards laid down for their use are described. Examples of different mineral waters are given. Received: 14 April 1998 / Accepted: 8 December 1998  相似文献   

2.
Artesian basins contain the largest mineral water resources of the world. There are several types of mineral therapeutic water: sulfate, chloride, radon-rich, iron-rich waters, etc. Artesian basins occupy very large areas in Russia. However, genesis of water and brines is still not very clear. This is one of the most important hydrogeological problems that is being attempted to solve for many years. Most of the Russian hydrogeologists traditionally consider that these waters are of sedimentary origin. However, higher concentrations of bromine, iodine, iron, radon and other balneologically active components can be of different origin, for example, of infiltration or juvenile water. As an example, two areas will be considered – West-Siberian basin and East-European artesian area.West-Siberian artesian basin has very distinct latitudinal and vertical zonation. Latitudinal zonation is caused by climate changes from north to south. As for the vertical zonation, mineralization and chemical composition change in the vertical cross-section and from the periphery to the center within the same aquifer. The main mineral water resources of West-Siberian artesian basin are concentrated in Mesozoic rocks. Brackish waters and low-saturated brines without specific components are used for medical purposes. The most well-known spa is Karachi, which exploits chloride-hydrocarbonate brackish water. Sodium chloride bromine and iodine-bromine waters are used at other health resorts. It is possible to organize extraction of iodine from brines of Tcherkashinsko-Tobolskoe occurrence in Tumen region.East-European artesian area occupies most of the Russian Platform. The most widespread types of mineral water within the Russian Platform are sodium-chloride and magnesium-sulfate waters and brines. Such well-known spas, like Moscow mineral waters, Krainka, Staraya Russa and many others, belong to this type. Resources of these waters are definitely connected with sedimentogenic processes. The upper hydrodynamic zone contains iron-rich, hydrogen sulfide, and sometimes radon-rich water. Their formation is caused by the interaction between waters of infiltration and sedimentary genesis, or between infiltration waters and host rocks. One of the examples is Polustrovo iron-rich water. There are industrially valuable waters containing bromine and iodine.The resources of therapeutic water of sedimentary basins allow to increase balneological potential of spas in Russia.  相似文献   

3.
Five commercially available in Estonia brands of bottled water have been analysed for 59 chemical elements by ICP-QMS and ICP-AES techniques to assess the quality of domestic mineral waters in scope of the European Groundwater Geochemistry Project initiated by the Geochemistry Expert Group of EuroGeoSurveys. Contents of 9 cations and anions, pH and electrical conductivity (EC) were measured in the bottled mineral waters by IC, titration and photometric methods. The data showed a significant difference between natural undiluted mineral water (Värska Originaal) characterised by the highest values of pH, EC and majority of trace elements studied, and other domestic waters sold in Estonia.  相似文献   

4.
In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US$2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.  相似文献   

5.
Thermal and mineral waters in north-eastern Slovenia   总被引:2,自引:0,他引:2  
 The Mura basin in north-eastern Slovenia is made up of two depressions, developed during the Late Neogene and Early Pliocene all within a widespread system of Pannonian basins. Both depressions are characterized by the occurrence of thermal waters of somewhat different hydrogeochemical character. Radgona depression is in the northern part of the basin and reaches depths of about 2 km. Thermal waters are generally dominated by sodium-bicarbonate, not related to the age of an aquifer, its wallrock composition, the type of porosity or total concentration of dissolved solids. Locally, sulphate-rich waters are encountered, and they are related to the presence of gypsum in the rocks of pre-Tertiary basement. The adjacent Ljutomer depression is over 4 km deep and comprises compartments with stagnant or semi-stagnant aquifers. Herein saline waters predominate, even in the aquifers of carbonate composition and abundant CO2 gas. In shallower, unconsolidated, intergranular aquifers sodium-bicarbonate waters predominate. Thermal aquifers of this type are very important to the economy of the region, but they are also subjected to overexploitation which is reflected in time-dependent changes of dynamic pressures, temperature, conductance, salinity, pH and concentration of major ions, trace elements, dissolved gasses, and total organic carbon. Mineral waters occur in shallow aquifers or springs in marginal areas of the Radgona depression. Bicarbonate waters are dominated by calcium, or both calcium and sodium. Some mineral waters are formed mainly by penetration of CO2 gas into shallow aquifers and consequent water–rock interaction. Composition of some mineral waters indicate their possible evolution from thermal waters which have risen from central parts of the Radgona depression along deep-seated faults, and have been modified by cooling and mixing processes. Received: 30 November 1998 · Accepted: 22 March 1999  相似文献   

6.
 Two test cases from Israel are presented herein employing the decay rate of radon along the flow path to assess groundwater flow velocities. Groundwater flow reaching the fault zone emerges in several places along the rift fault zone as thermal springs because of deep water confinement. The high water temperature of the surface is indicative of high vertical flow velocities, which maintains the original high temperatures. Knowing the Rn content at a source point and at a given down-gradient, and assuming no Rn addition from the water itself or along the flow path, one can calculate the flow velocity based on the Rn half-life time. The decay of Rn in western Galilee was found to be ∼570–150 pCi/l, and in the Dead Sea area from 5000–2000 pCi/l along a respective flow path of 1000 and 200 m, Based on the above, the calculated flow velocities were compared with those obtained from pumping tests in the study area. The method is applicable, because of the short Rn half-life, to cases of high Rn contents, short distances and high flow velocities. Received: 18 January 2000 · Accepted: 21 March 2000  相似文献   

7.
The Polish legislation gives groundwaters declared as curative ones a high rank of basic minerals or, in well-defined cases, of common minerals. Both kinds of minerals are subject of mining law regulations. This explains the use of the word deposit which, in the case of groundwaters, often does not reflect reality.  相似文献   

8.
 Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley, Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes that occur in the area. The impact of these activities on radon concentration in groundwater are discussed. Received: 17 September 1999 · Accepted: 11 April 2000  相似文献   

9.
Stable isotopes of hydrogen and oxygen were determined in 45 samples of water (27 samples of oil-associated waters, 17 samples of mineral waters used by spas, 1 sample of surface river water) from the Central Carpathian Synclinorium, covering a stratigraphic range of flysch sediments from Upper Cretaceous to Oligocene. Moreover, oxygen isotope compositions of authigenic calcite (vein and cement) from core samples of four boreholes were made to evaluate isotopic equilibrium between waters and diagenetic carbonates as a function of temperature. The saline and brackish waters (TDS from1 g/l to 48.9 g/l) considered here, generally belong to four hydrogeochemical classes: Na-Cl, Cl-HCO3-Na, HCO3-Cl-Na and HCO3-Na. Their isotopic composition causes them to fall to the right of Global Meteoric Water Line (GMWL) showing enrichment in 18O and 2H. On the other hand, relative to Standard Mean Ocean Water (SMOW) they are depleted in 2H and both depleted and enriched in 18O. The observed isotopic composition can be explained by the three-component mixing of surface water, diagenetically modified sea water (kind of connate water) and metamorphic water. The mixing is accompanied by an exchange of oxygen isotopes between water and carbonate cements causes 18O enrichment of interstitial waters. The contribution of isotopic exchange between water and clay minerals in shales was evaluated only theoretically basing of the literature.  相似文献   

10.
Bottled drinking water constitutes a significant part of total water consumption in developed countries and national and EU legislation regulates their market production. In the framework of an international project carried out by the EuroGeoSurveys Geochemistry Expert Group 36 bottled waters were obtained from public markets in Hungary in order to determine their hydrogeochemical composition. The objective of this study is to investigate the possible relationship between groundwater aquifer lithology and the processed and marketed bottled waters, and to develop a classification of bottled waters, based on their dissolved mineral content. Analytical results of this study are compared with the composition shown on bottle labels, and with archive hydrochemical data from the producing wells. Results show that, while processing of original groundwater, such as oxygen addition, iron or hydrogen-sulphide removal can significantly alter water composition, bottled water composition can be used for selection of sites for detailed hydrogeochemical and hydrogeological characterization. A simple and useful classification of bottled water quality is also presented that is based on natural groups of sampled waters derived by means of statistical data analysis methods.  相似文献   

11.
The use of spring water as a drinking, therapeutic, and ornamental resource has historical origins that date back to the Romans. The most ancient regulations on mineral waters had been enacted in Italy long before the union (1870).  相似文献   

12.
Considering its area, Portugal is one of the world's richest countries in mineral and spring waters. There are 33 different types of bottled water, 18 of which are classified as natural mineral water and the remaining as spring water. The majority of these waters are of low mineralisation in comparison to most European bottled waters.  相似文献   

13.
From early modern times until the present, Russia (temporarily extended to the USSR) had two capital cities: Moscow and Petersburg. Moscow was the original capital, it was succeeded by Petersburg from the beginning of the 18th century. From the early 20th century onward Moscow again became the capital, but it became a different kind of capital at the end of the 20th century. The paper describes the evolution of the representation of the state function in the appearance of the capital cities by way of the state buildings, the monuments, the street names. In addition it analyses the fate of the former capitals (first Moscow, then Petersburg) in terms of their symbolic functions. Petersburg originated as a capital turned to the outside emphasizing Russia's European vocation, while Moscow was at first the inward looking capital city representing the distinctive spiritual values of Russia. Changes had to do with the changes in the nature of the successive political regimes and with the changing roles of the two cities within those regimes.  相似文献   

14.
The assessment of groundwater quality in shallow aquifers is of high societal relevance given that large populations depend directly on these water resources. The purpose of this study was to establish links between groundwater quality, groundwater residence times, and regional geology in the St. Lawrence Lowlands fractured bedrock aquifer. The study focuses on a 4500 km2 watershed located in the St. Lawrence Lowlands of the province of Quebec in eastern Canada. A total of 150 wells were sampled for major, minor, and trace ions. Tritium (3H) and its daughter element, 3He, as well as radiocarbon activity (A14C) were measured in a subset of wells to estimate groundwater residence times. Results show that groundwater evolves from a Ca–HCO3 water type in recharge zones (i.e., the Appalachian piedmont) to a Na–HCO3 water type downgradient, toward the St. Lawrence River. Locally, barium (Ba), fluoride (F), iron (Fe), and manganese (Mn) concentrations reach 90, 2, 18, and 5.9 mg/L respectively, all exceeding their respective Canadian drinking water limits of 1, 1.5, 0.3, and 0.05 mg/L. Release of these elements into groundwater is mainly controlled by the groundwater redox state and pH conditions, as well as by the geology and the duration of rock–water interactions. This evolution is accompanied by increasing 3H/3He ages, from 4.78 ± 0.44 years upgradient to more than 60 years downgradient. Discrepancies between calculated 3H/3He and 14C water ages (the latter ranging from 280 ± 56 to 17,050 ± 3410 years) suggest mixing between modern water and paleo-groundwater infiltrated through subglacial recharge when the Laurentide Ice Sheet covered the study area, and during the following deglaciation period. A linear relationship between 3H activity and corrected 14C versus Mg/Ca and Ba support a direct link between water residence time and the chemical evolution of these waters. The Ba, F, Fe, and Mn concentrations in groundwater originate from Paleozoic rocks from both the St. Lawrence Platform and the Appalachian Mountains. These elements have been brought to the surface by rising hydrothermal fluids along regional faults, and trapped in sediment during their deposition and diagenesis due to reactions with highly sulfurous and organic matter-rich water. Large-scale flow of meltwater during subglacial recharge and during the subsequent retreat of the Laurentide Ice Sheet might have contributed to the leaching of these deposits and their enrichment in the present aquifers. This study brings a new and original understanding of the St. Lawrence Lowlands groundwater system within the context of its geological evolution.  相似文献   

15.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

16.
含氟地下水饮用处理技术   总被引:1,自引:0,他引:1  
李莉  王业耀  孟凡生 《地下水》2007,29(5):85-86,142
目前,高氟地下水和地方性氟中毒是世界范围内的一个难题,为解决这一问题,世界各国科研人员进行了大量的试验研究,总结出了不少成功的处理方法.综述前人对含氟地下水的各种处理技术,包括吸附法、沉淀法、电凝聚法、电渗析、Donna渗析等,并对这些技术进行了总结和比较,以指导生产实践.  相似文献   

17.
Mineral waters in Sarissky Stiavnik and Radoma are formed on the tectonic fault zones of the Zlin formation and Makovica sandstones. Precipitation waters flow downwards thus becoming enriched in TDS content. The process is enhanced by inflow of CO2 rich mineral waters of the Obidowa-Slopnice-Zboj unit, pushed by carbon dioxide and methane. Mineral waters in Sarissky Stiavnik and Radoma are of the Na-HCO3 chemical type, typical for the mineral water springs of the Magura unit in this part of the flysch belt. The origin of chloride component in the TDS content can be found in the waters with thalasogenic mineralization beneath the Magura unit, where the Obidowa-Slopnice-Zboj unit is to be found. Hydrogeological structures in Sarissky Stiavnik and Radoma can be classified as combined hydrogeological structures, where the upper partial hydrogeological structure is opened (Magura unit) and the lower structure is semi-closed (unit Obidowa-Slopnice-Zboj).  相似文献   

18.
19.
The study reports the age evolution of groundwater as it flows from the recharge area through a regional alluvial aquifer system in North Gujarat-Cambay region in western India. Radiocarbon (14C), 4He and 4He / 222Rn dating methods have been employed. Sediments from a drill core in the Cambay Basin were also analysed for uranium (U) and thorium (Th) concentrations and the measured values have been used to estimate the 4He and 222Rn production rate for groundwater age calculations. Additionally, factors controlling the distribution of 222Rn, 4He and temperature anomalies in groundwater, vis-à-vis their relation to the tectonic framework and lithology of the study area, have also been examined.The multi-isotope study indicated a reasonable correspondence in groundwater age estimates by the three methods employed. The groundwater 14C ages increased, progressively, in the groundwater flow direction: from the foothills of Aravalli Mountains in the east, and reached a value of ∼35 ka towards the region of lowest elevation, linking Little Rann of Kachchh (LRK)-Nalsarovar (NS)-Gulf of Khambhat (GK) in the western part of the study area. In this region, groundwater ages obtained for free flowing thermal wells and springs employing 4He and 4He / 222Rn systematics are in the order of million years. Such anomalous ages are possibly due to enhanced mobilisation and migration of ‘excess helium’ from hydrothermal circulation vents along deep-seated faults. Excluding such anomalous cases and considering all uncertainties, presently estimated 4He and 4He / 222Rn groundwater ages are in reasonable agreement with 14C age estimates in the Cambay Basin for helium release factor (ΛHe) value of 0.4 ± 0.3. The 4He method also indicated west-southwards progression of groundwater ages up to ∼100 ka beyond the Cambay Basin.Large ‘excess helium’ concentrations are also seen to be generally associated with anomalous groundwater temperatures (> 35 °C) and found to overlie some of the basement faults in the study area, particularly along the east and the west flanks of the Cambay Basin. Groundwater 222Rn activities in most of the study area are 800 ± 400 dpm/l. But, a thermal spring at Tuwa on the east flank of the Cambay Basin, having granitic basement at shallow depth, recorded the highest 222Rn activity (∼63,000 dpm/l).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号