首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

2.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

3.
We report the results of partial melting experiments between8 and 32 kbar, on four natural amphibolites representative ofmetamorphosed Archean tholeiite (greenstone), high-alumina basalt,low-potassium tholeiite and alkali-rich basalt. For each rock,we monitor changes in the relative proportions and compositionof partial melt and coexisting residual (crystalline) phasesfrom 1000 to 1150C, within and beyond the amphibole dehydrationreaction interval. Low percentage melts coexisting with an amphiboliteor garnet amphibolite residue at 1000–1025C and 8–16kbar are highly silicic (high-K2O granitic at 5%; melting, low-Al2O3trondhjemitic at 5–10%). Greater than 20% melting is onlyachieved beyond the amphibole-out phase boundary. Silicic tointermediate composition liquids (high-Al2O3 trondhjemitic-tonalitic,granodioritic, quartz dioritic, dioritic) result from 20–40%melting between 1050 and 1100C, leaving a granulite (plagioclase+ clinopyroxene orthopyroxene olivine) residue at 8 kbarand garnet granulite to eclogite (garnet + clinopyroxene) residuesat 12–32 kbar. Still higher degrees of melting ( 40–60%)result in mafic liquids corresponding to low-MgO, high-Al2O3basaltic and basaltic andesite compositions, which coexist withgranulitic residues at 8 kbar and edogitic or garnet granulitic(garnet + clinopyroxene + plagioclase orthopyroxene) residuesat higher pressures (12–28 kbar). As much as 40% by volumehigh-Al2O3 trondhjemitic-tonalitic liquid coexists with an eclogiticresidue at 1100–1150C and 32 kbar. The experimental datasuggest that the Archean tonalite-trondhjemite-granodiorite(TTG) suite of rocks, and their Phanerozoic equivalents, thetonalite-trondhjemite-dacite suite (including ‘adakites’and other Na-rich granitoids), can be generated by 10–40%melting of partially hydrated metabasalt at pressures abovethe garnet-in phase boundary (12 kbar) and temperatures between1000 and 1100C. Anomalously hot and/or thick metabasaltic crustis implied. Although a rare occurrence along modern convergentplate margins, subductionrelated melting of young, hot oceaniccrust (e.g. ocean ridges) may have been an important (essential)element in the growth of the continental crust in the Archean,if plate tectonic processes were operative. Coupled silicicmelt generation-segregation and mafic restite disposal may alsooccur at the base of continental or primitive (sub-arc?) crust,where crustal overthickening is a consequence of underplatingand overaccretion of mafic magmas. In either setting, net growthof continental crust and crustmantle recycling may be facilitatedby relatively high degrees of melting and extreme density contrastsbetween trondhjemitictonalitic liquids and garnet-rich residues.Continuous chemical trends are apparent between the experimentalcrystalline residues, and mafic migmatites and garnet granulitexenoliths from the lower crust, although lower-crustal xenolithsin general record lower temperatures (600–900C) and pressures(5–13 kbar) than corresponding residual assemblages fromthe experiments. However, geo-thermobarometry on eclogite xenolithsin kimberlites from the subcontinental mantle indicates conditionsappropriate for melting through and beyond the amphibole reactioninterval and the granulite-eclogite transition. If these samplesrepresent ancient (eclogitized) remnants of subducted or otherwisefoundered basaltic crust, then the intervening history of theirprotoliths may in some cases include partial melting. KEY WORDS: dehydration melting; metabasalt; continental growth; crust–mantle recycling *Corresponding author. Present address: Mineral Physics Institute and Center for High Pressure Research, Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA  相似文献   

4.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

5.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

6.
High-density CO2 inclusions occur abundantly in granulite fadesrocks (age of metamorphism 2–5b.y.) of the Nilgiri massif,southern India. The chronology of carbonic inclusions in thewidespread enderbitic granulites studied in relation to thedevelopment of micro-textures and mineral assemblages indicatesthat randomly oriented, negative-crystal-shaped CO2 inclusions(4–20 µim) in garnet and quartz grains (qtz I) armouredby garnet entrap syn-peak-metamorphic pore fluids. The moreabundant trail-bound CO2 inclusions in the deformed, polygonized,and partially recrystallized matrix quartz grains (qtz II andIII) and plagioclase grains were formed in connection with astage of compressional deformation and subsequent annealingrelated to the development of the late-Proterozoic Bhavani shearzone. These inclusions resulted from local re-equilibrationof the former peak-granulitic carbonic inclusions and re-entrapmentof released fluids. The presence of pure CO2 in all the inclusionsis confirmed by microthermometric data and laser-excited Ramanmicrospectrome-try. Temperatures of homogenization (liquid phase)are in the range of 50 to +20C, and the corresponding CO2 densitiesare between 1.154 and 0–807 g/cm3. Mineralogical thermobarometry on the enderbitic granulites documentsa continuous gradient of near-peak metamorphic conditions from750C, 9–10 kb in the northern part to 73OC, 7 kb inthe southwestern part of the Nilgiri massif. Uniform P, Testimates(600–650 C, 6–7 kb) for late coronitic garnet +quartz assemblages in enderbites and metadolerites indicatethat differential uplift of the massif to mid-crustal levelswas accomplished before late compressional deformation. In conformity,carbonic inclusions in quartz II and III are characterized byuniformly high density (1.154–1.08 g/cm3). In contrast,early carbonic inclusions in garnet and quartz I preserve thedensity contrast reflecting the regional P, T gradient duringnear-peak metamorphic fluid entrapment. The fluid inclusionsys-tematics indicate ‘near-isochoric’ uplift ofthe northern high-P domain, but near-isobaric cooling of thesouthwestern low-P domain. The carbonic fluids are thought tohave been derived either from internal sources during dehydration-meltingprocesses or from freezing synmetamorphic intrusives into thelower crust.  相似文献   

7.
Mid-Proterozoic ( 1000 Ma) granulite facies calc-silicates fromthe Rauer Group, East Antarctica, contain grossular-wollastonite-scapolite-dinopyroxene( + quartz or calcite) assemblages which preserve symplectiteand corona textures typically involving the growth of secondarywollastonite. The textures include (1) wollastonite rims betweenquartz and calcite; (2) wollastonite-plagioclase rims and intergrowthsbetween quartz and scapolite; (3) wollastonite-scapolite-clinopyroxeneinter-growths replacing grossular; and (4) wollastonite-plagioclasesymplectites replacing grossular or earlier symplectites (3). Reactions between grossular, scapolite, wollastonite, calcite,quartz, anorthite, and vapour, have been modelled in the CaO-Al2O3SiO2-H2O-CO2and more complex systems using the internally consistent data-setof Holland & Powell (1990). Reactions producing scapoliteand wollastonite consume vapour as temperature increases (i.e., carbonation), in agreement with the results of Moecher &Essene (1990). These calc-silicates can therefore behave asfluid sinks under high-grade conditions. Conversely, they maybe important fluid sources on cooling and contribute to theformation of post-metamorphic CO2rich fluid inclusions in isobaricallycooled granulites. P-T-CO2 diagrams calculated for typical phase compositions (e.g., garnet, scapolite) demonstrate that the observed texturesare a record of near-isothermal decompression at 800–850 C, consistent with P—rpath determinations based on otherrock types from the Rauer Group. For example, texture (2) resultsfrom crossing the reaction Scapolite + Quartz = Wollastonite + Plagioclase + V on decompression, at 6. 5–7 kb, 820 C, and aCO2 of0–4–0–5. Furthermore, correlations betweenmodes of product phases (e. g., wollastonitexlinopyroxene) andreactant garnet composition preclude open-system behaviour inthe formation of these textures, consistent with post-peak vapour-absentreactions such as Grossular + Calcite + Quartz = Wollastonite + Scapolite occurring on decomposition at high temperatures (>800C). Reaction textures developed in calc-silicates from other granuliteterranes often involve the formation of grossular ( + quartz calcite) as rims on wollastonite-scapolite, or replacementof wollastonite by calcite-quartz. These textures have developedprincipally in response to cooling below 780–810 C andmay be signatures of near-isobaric cooling. Infiltration ofhydrous fluid is not a necessary condition for the productionof garnet coronas in wollastonite-scapolite granulites. *Present address: Department of Earth Sciences, University ofMelbourne, Parkville, Victoria 3052, Australia  相似文献   

8.
The granulite complex at Anakapalle, which was metamorphosedat 1000 Ma, comprises orthopyroxene granulites, leptynite, khondalite,mafic granulites, calc-silicate rock, spinel granulites, andtwo types of sapphirine granulites—one quartz-bearingand migmatitic and the other devoid of quartz and massive. Reactiontextures in conjunction with mineral-chemical data suggest severalcontinuous and discontinuous equilibria in these rocks. In orthopyroxenegranulites, dehydration-melting of biotite in the presence ofquartz occurred according to the reaction biotite+quartz= garnet (Py37)+K-feldspar+orthopyroxene + liquid. Later, this garnet broke down by the reaction garnet (Py37)+quartz= orthopyroxene + plagioclase. Subsequently, coronal garnet (Py30) and quartz were producedby the same reaction but proceeding in the opposite direction.In spinel granulites, garnet (Py42) and sillimanite were producedby the breakdown of spinel in the presence of quartz. In thetwo types of sapphirine granulites, garnet with variable pyropecontent broke down according to the reaction garnet = sapphirine + sillimanite + orthopyroxene. The highest pyrope content (59 mol %) was noted in garnets fromquartz-free sapphirine granulites compared with the quartz-bearingone (53 mol % pyrope). The calculated positions of the mineralreactions and diserete P-T points obtained by thermobarometrydefine a retrograde P-T trajectory during which a steep decompressionof 1.5 kbar from P-Tmax of 8 kbar and 900C was followed bynear-isobaric cooling of 300C. During this decompression, garnetwith variable pyrope contents in different rocks broke downon intersection with various divariant equilibria. Near-isobariccooling resulted in the formation of coronal garnet around second-generationorthopyroxene and plagioclase replacing earlier porphyroblasticgarnet in orthopyroxene granulites. It has been argued thatthe deduced P-T trajectory originated in an extensional regimeinvolving either a crust of near-normal thickness of a slightlyoverthickened crust owing to magmatic underaccretion.  相似文献   

9.
Ultrahigh-temperature quartz-sapphirine granulite xenoliths in the post-Karoo Lace kimberlite, South Africa, comprise mainly quartz, sapphirine, garnet and sillimanite, with rarer orthopyroxene, antiperthite, corundum and zinc-bearing spinel; constant accessories are rutile, graphite and sulphides. Comparison with assemblages in the experimentally determined FMAS and KFMASH grids indicates initial equilibration at >1040 °C and 9–11  kbar. Corona assemblages involving garnet, sillimanite and minor cordierite developed on a near-isobaric cooling P–T  path as both temperature and, to a lesser extent, pressures decreased. Garnet-orthopyroxene Fe-Mg exchange thermometers record temperatures of only 830–916 °C. These estimates do not indicate the peak metamorphic conditions but instead reflect the importance of post-peak Fe-Mg exchange during cooling. Correction of mineral Fe-Mg compositions for this exhange using a convergence approach of Fitzsimons & Harley (1994 ) leads to retrieved P–T  estimates from garnet-orthopyroxene thermobarometry ( c . 1000 °C and 10.5±0.7  kbar) that are consistent with the petrogenetic grid constraints. U-Pb dating of a single zircon grain gives an age of 2590±83  Ma, interpreted as the age of the metamorphic event. Protolith major and trace element chemistries of the xenoliths differ from sapphirine-quartzites typical of the Napier Complex (Antarctica) but are comparable to less siliceous, high Cr and Ni, sapphirine granulites reported from several ultrahigh temperature granulite terranes.  相似文献   

10.
The melting relations of two proposed crustal source compositionsfor rhyolitic magmas of the Taupo Volcanic Zone (TVZ), New Zealand,have been studied in a piston-cylinder apparatus at 10 kb totalpressure and a range of water activities generated by H2O-CO2vapour. Starting materials were glasses of intermediate composition(65 wt.% Si02 representing a metaluminous ‘I-type’dacite and a peraluminous ‘S-type’ greywacke. Crystallizationexperiments were carried out over the temperature range 675to 975?C, with aH2O values of approximately 1?0, 0?75, 0?5,and 0?25. Talc-pyrex furnace assemblies imposed oxygen fugacitiesclose to quartz-fayalite-magnetite buffer conditions. Assemblages in both compositions remain saturated with quartzand plagioclase through 675–700?C at high aH2O, 725–750?Cat aH2O0?5, and 800–875?C at aH2O0?25, corresponding to<60–70% melting. Concentrations of refractory mineralcomponents (Fe, Mg, Mn, P, Ti) in liquids increase throughoutthis melting interval with increasing temperature and decreasingaH2O. Biotite and hornblende are the only mafic phases presentnear the solidus in the dacite, compared with biotite, garnet,gedritic orthoamphibole, and tschermakitic clinoamphibole inthe greywacke. Near-solidus melting reactions are of the type:biotite + quartz + plagioclase = amphibole ? garnet, potentiallyreleasing H2O for dehydration melting in the greywacke, butproducing larger amounts of hornblende and releasing littleH2O in the dacite. At aH2O0?25 and temperatures 825–850?C,amphibole dehydration produces anhydrous mineral phases typicalof granulite fades assemblages (clinopyroxene, orthopyroxene,plagioclase?quartz in the dacite; garnet, orthopyroxene, plagioclase?quartzin the greywacke) coexisting with melt proportions as low as40%. Hornblendce-saturated liquids in the dacite are weaklyperaluminous (0?3–1?6 wt.% normative C—within therange of peraluminous TVZ rhyolites), whereas, at aH2O0?25 andtemperatures 925?C, metaluminous partial melt compositions (upto 1?8 wt.% normative Di) coexist with plagioclase, orthopyroxene,and clinopyroxene. At all water activities, partial melts ofthe greywacke are uniformly more peraluminous (1?5–2?6wt.% normative C), reflecting their saturation in the componentsof more aluminous mafic minerals, particularly garnet and Al-richorthopyroxene. A metaluminous source for the predominantly Di-normativeTVZ rhyolites is therefore indicated. With decreasing aH2O the stability fields of plagioclase andquartz expand, whereas that of biotite contracts. These changesare reflected in the proportions of normative salic componentsin partial melts of both the dacite and greywacke. At high aH2O,partial melts are rich in An and Ab and poor in Or (trondhjemitic-tonalitic);with decreasing aH2O they become notably poorer in An and richerin Or (granodioritic-granitic). These systematic variationsin salic components observed in experimental metaluminous tostrongly peraluminous melts demonstrate that a wide varietyof granitoid magmas may be produced from similar source rocksdepending upon P-T-aH2O conditions attending partial melting.Some peraluminous granitoids, notably trondhjemitic leucosomesin migmatites, and sodic granodiorites and granites emplacedat deep crustal levels, have bulk compositions similar to nearsolidus melt compositions in both the dacite and greywacke,indicating possible derivation by anatexis without the involvementof a significant restite component.  相似文献   

11.
Experiments with peridotite minerals in simple (MgO–Al2O3–SiO2,CaO–MgO–SiO2 and CaO–MgO–Al2O3–SiO2)and natural systems were conducted at 1300–1500°Cand 6–10 GPa using a multi-anvil apparatus. The experimentsin simple systems demonstrated consistency with previous lowerpressure experiments in belt and piston–cylinder set-ups.The analysis of spatial variations in pyroxene compositionswithin experimental samples was used to demonstrate that pressureand temperature variations within the samples were less than0·4 GPa and 50°C. Olivine capsules were used in natural-systemexperiments with two mineral mixtures: SC1 (olivine + high-Alorthopyroxene + high-Al clinopyroxene + spinel) and J4 (olivine+ low-Al orthopyroxene + low-Al clinopyroxene + garnet). Theexperiments produced olivine + orthopyroxene + garnet ±clinopyroxene assemblages, occasionally with magnesite and carbonate-richmelt. Equilibrium compositions were derived by the analysisof grain rims and evaluation of mineral zoning. They were comparedwith our previous experiments with the same starting mixturesat 2·8–6·0 GPa and the results from simplesystems. The compositions of minerals from experiments withnatural mixtures show smooth pressure and temperature dependencesup to a pressure of 8 GPa. The experiments at 9 and 10 GPa producedandradite-rich garnets and pyroxene compositions deviating fromthe trends defined by the lower pressure experiments (e.g. higherAl in orthopyroxene and Ca in clinopyroxene). This discrepancyis attributed to a higher degree of oxidation in the high-pressureexperiments and an orthopyroxene–high-P clinopyroxenephase transition at 9 GPa. Based on new and previous resultsin simple and natural systems, a new version of the Al-in-orthopyroxenebarometer is presented. The new barometer adequately reproducesexperimental pressures up to 8 GPa. KEY WORDS: garnet; mineral equilibrium; multi-anvil apparatus; orthopyroxene; geobarometry  相似文献   

12.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

13.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

14.
Olivine-rich rocks containing olivine + orthopyroxene + spinel+ Ca-amphibole ± clinopyroxene ± garnet are presentin the central Ötztal–Stubai crystalline basementassociated with eclogites of tholeiitic affinity. These rockscontain centimetre-sized garnet layers and lenses with garnet+ clinopyroxene ± corundum. Protoliths of the olivine-richrocks are thought to be olivine + orthopyroxene + spinel dominatedcumulates generated from an already differentiated Fe-rich () tholeiitic magma that was emplaced into shallowcontinental crust. Protoliths of the garnet-rich rocks are interpretedas layers enriched in plagioclase and spinel intercalated ina cumulate rock sequence that is devoid of, or poor in, plagioclase.U–Pb sensitive high-resolution ion microprobe dating ofzircons from a garnet layer indicates that emplacement of thecumulates took place no later than 517 ± 7 Myr ago. Aftertheir emplacement, the cumulates were subjected to progressivemetamorphism, reaching eclogite-facies conditions around 800°Cand >2 GPa during a Variscan metamorphic event between 350and 360 Ma. Progressive high-P metamorphism induced breakdownof spinel to form garnet in the olivine-rich rocks and of plagioclase+ spinel to form garnet + clinopyroxene ± corundum inthe garnet layers. Retrogressive metamorphism at T 650–680°Cled to the formation of Ca-amphibole, chlorite and talc in theolivine-rich rocks. In the garnet layers, högbomite formedfrom corundum + spinel along with Al-rich spinel, Ca-amphibole,chlorite, aspidolite–preiswerkite, magnetite, ilmeniteand apatite at the interface between olivine-rich rocks andgarnet layers at P < 0·8 GPa. Progressive desiccationof retrogade fluids through crystallization of hydrous phasesled to a local formation of saline brines in the garnet layers.The presence of these brines resulted in a late-stage formationof Fe- and K-rich Ca-amphibole and Sr-rich apatite, both characterizedby extremely high Cl contents of up to 3·5 and 6·5wt % Cl, respectively. KEY WORDS: cumulates; Variscan metamorphism; SHRIMP dating; högbomite; saline brines  相似文献   

15.
Abstract The enthalpy of reaction of plagioclase and pyroxene to produce garnet and quartz has been a major source of error in granulite geobarometry because of relatively uncertain enthalpy values available from high-temperature solution calorimetry and compiled indirectly from experimental phase equilibria. Recent, improved calorimetric measurements of ΔHR are shown to yield palaeopressures which are internally consistent between orthopyroxene and clinopyroxene calibrations for many South Indian granulites from the Archaean high-grade terranes of southern Karnataka and northern Tamil Nadu. This represents a considerable improvement over previous calibrations, which gave disparate results for the two independent barometers involving orthopyroxene and clinopyroxene, requiring a 2-kbar ‘empirical adjustment’to force agreement. Palaeopressures thus calculated for 30 well-documented two-pyroxene garnet granulites from South India give internally consistent pressures with a mean of 8.1°1.1 kbar at 750°C, consistent with the presence of both kyanite and sillimanite in many areas. Those samples for which garnet–pyroxene exchange thermometers give plausible granulite-range temperatures and whose minerals are minimally zoned give the best agreement of the two barometers. Samples which yield low palaeotemperatures and different rim and core compositions of minerals yield pressures for the orthopyroxene assemblage as much as 2 kbar lower than for the assemblage with clinopyroxene. This disparity probably represents post-metamorphic-peak re-equilibration. We conclude that considerable confidence may be placed in geobarometry of two-pyroxene granulites where apparent palaeotemperatures are in the granulite facies range (>700°C) and where mineral zonation is minimal. Of the several possible sets of activity–composition relations in use, those constructed from analysis of phase equilibria give slightly higher palaeopressures and appear more consistent with analytical data from the Nilgiri Hills uplift, where kyanite is the only aluminium silicate reported to be stable in peak-metamorphic assemblages. The present results support a palaeopressure gradient, increasing generally from south to north, across the Nilgiri Hills as inferred by previous geobarometry.  相似文献   

16.
Sapphirine granulite occurring as lenses in charnockite at Anantagiri,Eastern Ghat, India, displays an array of minerals which developedunder different P-T-X conditions. Reaction textures in conjunctionwith mineral chemical data attest to several Fe-Mg continuousreactions, such as
  1. spinel+rutile+quartz+MgFe–1=sapphirine+ilmenite
  2. cordierite=sapphirine+quartz+MgFe–1
  3. sapphirine+quartz=orthopyroxene+sillimanite+MgFe–1
  4. orthopyroxene+sapphirine+quartz=garnet+MgFe–1
  5. orthopyroxene+sillimanite=garnet+quartz+MgFe–1
  6. orthopyroxene+sillimanite+quartz+MgFe–1=cordierite.
Calculated positions of the reaction curves in P-T space, togetherwith discrete P-T points obtained through geothermobarometryin sapphirine granulite and the closely associated charnockiteand mafic granulite, define an anticlockwise P-T trajectory.This comprises a high-T/P prograde metamorphic path which culminatedin a pressure regime of 8?3 kb above 950?C, a nearly isobariccooling (IBC) path (from 950?C, 8?3 kb, to 675?C, 7?5kb) anda terminal decompressive path (from 7?5 to 4?5 kb). Spinel,quartz, high-Mg cordierite, and sapphirine were stabilized duringthe prograde high-T/P metamorphism, followed by the developmentof orthopyroxene, sillimanite, and garnet during the IBC. Retrogradelow-Mg cordierite appeared as a consequence of decompressionin the sapphirine granulite. Deformational structures, reportedfrom the Eastern Ghat granulites, and the available geochronologicaldata indicate that prograde metamorphism could have occurredat 30001?00 and 2500?100 Ma during a compressive orogeny thatwas associated with high heat influx through mafic magmatism. IBC ensued from Pmax and was thus a direct consequence of progrademetamorphism. However, in the absence of sufficient study onthe spatial variation in P-T paths and the strain historiesin relation to time, the linkage between IBC and isothermaldecompression (ITD) has remained obscure. A prolonged IBC followedby ITD could be the consequence of one extensional mechanismwhich had an insufficient acceleration at the early stage, orITD separately could be caused by an unrelated extensional tectonism.The complex cooled nearly isobarically from 2500 Ma. It sufferedrapid decompression accompanied by anorthosite and alkalinemagmatism at 1400–1000 Ma.  相似文献   

17.
Clinopyroxene and orthopyroxene megacrysts with lamellar intergrowths of pyroxenes and garnet rarely survive in pyroxenite layers from the exposed spinel-lherzolite massifs because of the emplacement history into the crust. Such features are remarkably preserved in some thick bands (up to 1 m) from the Freychinède ultramafic body (Ariège, French Pyrenees). These bands display a symmetrical zoning from the edges to the centre due to the concurrent decrease of orthopyroxene/clinopyroxene and spinel/garnet modal ratios. Textural and chemical data suggest that the present pyroxenite parageneses resulted from subsolidus recrystallization of magmatic assemblages composed of Al-rich orthopyroxene and clinopyroxene with minor spinel. These primary assemblages were changed by subsolidus recrystallization connected with an isobaric cooling at upper-mantle depth (45–50 km) from solidus temperature (1250°C) down to steady equilibrium temperature (950° C). The primary Al-rich ortho-and clinopyroxenes behaved differently on cooling. In a first stage, orthopyroxene exsolved concomitant Al-rich clinopyroxene and garnet, whereas clinopyroxene exsolved only Al-rich orthopyroxene. The garnet exsolution in clinopyroxene host is delayed to lower temperatures. This multistage process could account for the contrasting shapes of diffusion gradients adjacent to exsolved garnet, which tend to be flat in host-orthopyroxene and steep in host-clinopyroxene. An independent thermal modelling, together with available Al-diffusion data in clinopyroxene, allows us to define a fast magmatic cooling followed by a two-stage subsolidus cooling (35° C/year-6 from 1250° C to 1050° C and 9° C/year-6 to 900° C). This matches the contrasted exsolution sequences observed in the pyroxene megacrysts.  相似文献   

18.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

19.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

20.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号