首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garnet-orthopyroxene bearing granulite assemblages from theArchaean Napier Complex, Enderby Land, Antarctica, display avariety of exsolution, recrystallization and corona textureswhich result both from near-isobaric cooling from the peak ofmetamorphism and from later overprinting. Compositional dataon distinct generations of phases and on zoning patterns incoexisting minerals, have been used to estimate (a) peak metamorphicconditions attained between the first and second major deformationphases (Dl and D2); (b) cooling paths from this peak, and (c)ambient metamorphic conditions at the time of a later deformation(D3). Experimentally calibrated geothermobarometers indicateinitial metamorphism at 900–950?C and 7–10 kb duringand subsequent to Dl and D2, at 3100–3000 Ma. The presentlyexposed granulites indicate a regional increase in the pressuresof this metamorphism south-west to the Scott Mountains-CaseyBay region, where minimum crustal thicknesses of 10 kb wereattained at c. 3000 Ma. Subsequently, the Napier Complex granulitesevolved through a prolonged period of near-isobaric coolingprior to further metamorphism at 600–750 and 4–8kb during D3 at c. 2500 Ma. The near-isobaric pressure-temperature-timepath (P-T-t) suggests that the Napier Complex acted as an essentiallystable craton as early as 3000 Ma, and that the major magmaticand tectonic crustal thickening events associated with Dl precededthe thermal peak represented by the earliest recognized metamorphism.  相似文献   

2.
The most recent of two metamorphic events (M2) in the Snow Peakarea caused progressive changes in mineral parageneses in peliticrocks ranging from chlorite-biotite to kyanite grade. Systematicpartitioning of elements between coexisting phases indicatesa close approach to equilibrium during M2. Temperature estimatesfor M2 range from 440 ?C in the chlorite-biotite zone to 565?C in the kyanite zone. Coexistence of kyanite, garnet, ilmenite,and quartz places an upper pressure limit of approximately 60kb, and an upper temperature limit at the kyanite-sillimaniteboundary. Equilibrium of garnet, kyanite, plagioclase, and quartzindicates that total pressure of equilibration of kyanite-bearingassemblages was approximately 6 kb. Pressure estimates basedon equilibrium of garnet, muscovite, biotite, and plagioclaseindicate a pressure gradient between garnet and lower staurolitezone samples, which equilibrated at approximately 3? 5 kb, andupper staurolite to kyanite zone samples, which equilibratedat 5? 5 kb. Equilibrium of paragonite component of muscovitewith plagioclase, kyanite and quartz, distribution of speciesin C-O-H fluids in equilibrium with graphite, and the presenceof zoisite in adjacent calc-silicate rocks indicate that themetamorphic fluid in kyanite-bearing assemblages contained 65-90mole per cent H2O. However, the experimentally calibrated equilibriumof staurolite, quartz, garnet, and kyanite can be reconciledwith estimated temperature only if XH2O in the fluid was verylow ( 33 mole per cent). T-X(Fe-Mg) relations among chlorite, biotite, garnet, staurolite,kyanite, muscovite and quartz are calculated at 6 kb on thebasis of 3 independent Fe-Mg exchange equilibria: garnet-biotite,chlorite-biotite (empirical, this study), garnet-staurolite(empirical, this study), and three independent net transferequilibria. Alternative sets of data for Mg-chlorite and Fe-stauroliteare evaluated by comparing observed and calculated changes inmineral paragenesis and mineral composition with grade. Chloritedata from Helgeson et al., 1978 give T-X(Fe-Mg) relations consistentwith trends observed in these rocks, whereas data derived frombreakdown of clinochlore and clinochlore + dolomite do not.Calculation of T-X(Fe-Mg) relations consistent with observationsrequires lower values of and than those consistent with experiments on the breakdown of staurolite+quartz.  相似文献   

3.
在高喜马拉雅带的定日县曲当—扎乡一带出露的高喜马拉雅结晶岩系中, 发现了高压变质的石榴辉石岩及其降压变质的镁铁质麻粒岩组合, 早期高压条件下形成的石榴辉石岩矿物组合为Grt+Cpx (富铝) +Ru+Q, 斜长石已完全消失, 形成温度为845~896℃, 压力大于1.2GPa, 已达到榴辉岩相的压力条件.中期的麻粒岩相组合为Opx+Pl±Cpx±Ga, 其中Opx、Cpx和Pl为石榴石的后成合晶, 形成温度为993~776℃, 压力为0.90~1.21GPa, 为中压麻粒岩相产物, 晚期矿物仅见普通角闪石、斜长石和石英, 是角闪岩相退变质的产物, 表明HHC经历了降压升温-降压降温的快速抬升过程, 证明其抬升作用与地幔热源的参与有关.   相似文献   

4.
Proterozoic granulite facies gneisses in MacRobertson Land, east Antarctica, are cut by numerous D5 mylonite-ultramylonite zones of probable Cambrian age. In garnet-absent mafic two-pyroxene gneisses and garnet-bearing charnockitic orthogneisses, the mylonite-ultramylonite zones are characterized by the growth of garnet at the expense of ilmenite, pyroxene and plagioclase. Textures within each mylonite zone can vary from protomylonitic to ultramylonitic. A range of mineral textures involving M5 garnet is developed corresponding to variations in deformation intensity. In protomylonites, garnet occurs as coronas on orthopyroxene-plagioclase and ilmenite-plagioclase boundaries, and as overgrowths on earlier garnet. In ultramylonites, fine-grained orthopyroxene-plagioclase-garnet ± quartz ± clinopyroxene intergrowths and poikilitic garnet are common. Garnet growth in all shear zones is accompanied by shifts in the compositions of neoblastic minerals occurring with garnet, consistent with local chemical equilibrium having been attained during recrystallization. Mylonitization is inferred to have occurred at P ∼ 6.5 kbar. Temperature estimates for M5 vary between 550 and 797 C, which may reflect variations and uncertainties associated with the calibrations used and/or partial re-equilibration during cooling. The presence of post-tectonic, coronate garnet in some mylonite zones indicates that garnet continued to form exclusively in the mylonite zones after movement had ceased and is interpreted to reflect the effects of localized strain heating.  相似文献   

5.
Abstract The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.  相似文献   

6.
The pre-Cambrian granulites of Enderby Land Antarctica, contain coexisting spinel-quartz, sapphirine-quartz, hypersthene-sillimanite-quartz and osumilite on a regional extent. Osumilite is present in a variety of mineral assemblages, most of which are documented in granulites for the first time. The mineral assemblages, reactions and compositional zoning in minerals are discussed in terms of continuous and discontinuous reactions in response to changing conditions of metamorphism. The development of many of the mineral coronas can be explained by continuous rather than discontinuous reactions, due to the effects of Mg-Fe and (Mg,Fe)-2Al exchange equilibria with decreasing temperature. The highest P-T conditions of metamorphism (8–10 kb, 900 °–980 ° C, Ellis, in preparation) were beyond the stability limit of coexisting garnet-cordierite. Secondary cordierite has developed through a large number of mineral reactions in response to cooling of these granulites.A theoretical analysis of the phase relations involving osumilite in the chemical systems K2O-MgO-Al2O3-SiO2 and K2O-MgO-FeO-Al2O3-SiO2 is presented. In the pure Mg-system the lower temperature stability limit of Mg-osumilite is inferred to be defined with increasing pressure by the reactions OsCd+En+Kfeld+Qtz, OsSa+En+Kfeld+Qtz, OsSill+En+Kfeld+Qtz. In iron-bearing systems an important reaction involving osumilite is Os+GtCd+Hy+Kfeld+Qtz.At moderate temperatures and pressures, osumilite is limited to rocks which lie on the Mg-rich side of the Cd-Hy stable tie line on an AFM diagram. At higher pressures and temperatures osumilite occurs in a widerrange of rock compositions because of the stability of coexisting garnet and osumilite. Petrographic data, as well as chemographic relations indicate that for many common rock compositions, garnet, cordierite, hypersthene, sapphirine and sillimanite cannot coexist with both osumilite and K-feldspar.Published with the permission of the Director, Bureau of Mineral Resources  相似文献   

7.
HARLEY  SIMON L. 《Journal of Petrology》1988,29(5):1059-1095
Granulites from the Rauer Group, East Antarctica, were metamorphosedat 860?40?C during a high-grade tectonothermal episode youngerthan 1400 Ma and probably close to 1000 Ma in age. A spatialvariation of pressures of metamorphism at the thermal peak iscalculated for felsic and mafic granulites preserving garnet-orthopyroxene-plagioclaseassemblages with or without additional clinopyroxene and quartz.Pressures of 6 to 7.5 kb are derived for the northern partsof the Rauer Group, whereas 7–8?5 kb pressures are calculatedfor similar granulites some 10–20 km further south. Post-deformational reaction textures including orthopyroxene-plagioclasesymplectites after garnet in basic granulites and plagioclasemoats or rims on garnet and orthopyroxene in felsic granulitesindicate a decompressional pressure-temperature-time evolution(P-T-t) which is confirmed by garnet-orthopyroxene-plagioclase-quartzand garnet-orthopyroxene barometry of zoned and regrown minerals.A pervasive decompression through c. 2 to 3–5 kb in thenorthern Rauer Group and to 5–6 kb in the southern partof the region occurred at temperatures above 700?C and probablyin excess of 750?C. This P-T evolution, which indicates a uniformunroofing of some 6–9 km while quite high mid- to lower-crustaltemperatures only decreased by c. 100?C, is consistent withthe later stages of a prolonged collision-related thermal evolution.Comparisons of the P-T-t paths of the late Proterozoic granulitesfrom the Rauer Group and elsewhere in East Antarctica with calculatedP-T paths for simple collisional models where erosion terminatesthe heating phase show that externally- derived magmatic additionsand an enhanced total heat budget are necessary to produce theobserved high-temperature evolution.  相似文献   

8.
采用激光拉曼、阴极发光和电子探针技术,确认冀西北石榴角闪二辉麻粒岩锆石中保存早期高压变质包体矿物组合:石榴石(Grt)+单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)+金红石(Rt)、单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)和石榴石(Grt)+单斜辉石(Cpx)+斜长石(Pl)+石英(Qtz)。其中少量锆石具有继承性锆石的核,而多数锆石则形成于高压麻粒岩相变质阶段。利用TWQ方法限定石榴角闪二辉麻粒岩锆石中所保存的高压包体矿物组合的变质温度条件为750~820℃,压力为1.07~1.40 GPa。该项研究成果对于如何识别高压麻粒岩以及深入研究其成因机制均具有重要的科学意义。  相似文献   

9.
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X Mg=78) — cordierite (X Mg=87) — garnet (X Mg=51) — sillimanite. Rare green spinel (X Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO 2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex.  相似文献   

10.
 Preservation of high-temperature mineral isotopic compositions is necessary for successful high-temperature isotopic thermometry. Other requirements include large fractionations between constituent minerals, well-calibrated equilibria, carefully designed sampling strategies and data handling techniques that quantitatively account for retrograde exchange. Here, we apply isotopic thermometry and data handling techniques to calculate and contrast mineral-pair apparent temperature data and observed closure temperature data (T c-observed) (cf. Farquhar et al. 1993) for the very high temperature (>900°C), dry granulites of the Taltson Magmatic Zone of Northwestern Canada and the Napier Complex of Enderby Land, Antarctica. The isotopic compositions of garnet grains from both terrains reflect high temperature conditions (>950°C) and point to this mineral as an excellent candidate for isotopic thermometry. The isotopic compositions of quartz, pyroxene, ilmenite and magnetite indicate that they equilibrated to lower temperature conditions (<900°C) due to faster rates of oxygen diffusion in these minerals, possibly enhanced by exsolution and ductile deformation, compared with garnet. Our temperature data for garnet and pyroxene are ≈200°C higher than is possible to explain by existing “wet” diffusion data, but is consistent with “dry” diffusion data, suggesting that the extremely dry nature of these rocks may have played a significant role in the preservation of high-temperature isotopic compositions. Both quartz and magnetite exhibit subgrain features, indicative of ductile deformation. Quartz-magnetite temperatures from the Napier complex are similar to those inferred for a late (D3) deformation and are lower than those predicted by “dry” diffusion data. We infer that the quartz-magnetite isotopic fractionations reflect deformation-enhanced exchange that accompanied D3. Garnet in these same samples did not undergo ductile deformation and did not exchange oxygen with coexisiting phases during cooling. This may reflect strain partitioning between less easily deformed, low abundance garnet and more easily deformed matrix quartz and magnetite. The resistance of garnet to ductile deformation in these rocks is a second reason why garnet is suitable for isotopic thermometry. Received: 6 February 1996 / Accepted: 25 April 1996  相似文献   

11.
正The Yushugou HP granulite-peridotite complex is located at east of northern margin of southern Tianshan mountains,China,which consists of granulite unit and peridotite unit mainly.Because of the rare association of  相似文献   

12.
High-pressure experiments have been carried out at 11-22 kbar and 900-1200°C using a piston cylinder apparatus to constrain the thermal peak condition of a granulite characterized by the mineral assemblage of orthopyroxene+sillimanite+quartz from McIntyre Island, Enderby Land, East Antarctica. The bulk composition of the starting material is 85 wt.% McIntyre granulite+15 wt.% sillimanite. At 11 kbar, orthopyroxene, sillimanite and quartz are stable below 1000°C. At 1050°C sillimanite does not appear, and sapphirine coexists with orthopyroxene and quartz. These experimental results indicate that the McIntyre granulite has undergone the ultra high-temperature metamorphism at 1000-1050°C represented by the diagnostic mineral assemblage of orthopyroxene, sillimanite and quartz.  相似文献   

13.
华北东南缘五河杂岩的变质演化过程研究有助于揭示研究区前寒武纪变质基底的形成与演化历史.基于对五河杂岩中镁铁质麻粒岩进行的详细岩相学观察、矿物电子探针及锆石LA-ICP-MS U-Pb定年和微量元素分析,识别出古元古代变质演化的3个阶段,重建了峰期后近等温减压及降压冷却的顺时针P-T-t轨迹.峰期高压麻粒岩相变质阶段的代表性矿物组合为石榴子石(富Ca核部)+单斜辉石(富Al)+斜长石+石英+金红石±角闪石(富Ti),所记录的峰期温压条件为850~900 ℃、1.5 GPa;峰期后近等温减压麻粒岩相变质阶段,富Ti角闪石分解在周围形成石榴子石+斜方辉石+斜长石±单斜辉石的矿物组合,所记录的温压条件为~900 ℃、1.1~1.2 GPa;晚期角闪岩相退变质阶段,石榴子石分解产生角闪石+斜长石±石英,所记录的温压条件为600~680 ℃、0.65~0.75 GPa.锆石U-Pb定年结果表明,高压麻粒岩相、中压麻粒岩相和角闪岩相变质时代分别为~1.90 Ga、~1.85 Ga和~1.78 Ga.因此,研究区镁铁质麻粒岩的变质演化过程与胶北地体可以对比,结合已有的2.1 Ga花岗质岩石的成因和锆石年代学等方面研究成果,进一步证明五河杂岩属于胶-辽-吉带的西延,二者共同构成了华北克拉通东部一条古元古代碰撞造山带.   相似文献   

14.
Abstract Polymetamorphic orthoamphibole-bearing gneisses from the vicinity of shear zones in Casey Bay, Enderby Land, Antarctica, record both the overprinting of Archaean granulite lithologies by Proterozoic metamorphism and the subsequent evolution of the latter episode during localized deformation.
Mineral chemistry and zoning relationships in orthoamphibole-garnet-kyanite-quartz and later orthoamphibole-garnet-cordierite-quartz assemblages are used together with interpretation of reaction and corona textures to constrain the Proterozoic pressure-temperature path experienced by the rocks. Consideration of reaction topologies, P-T-X(Fe-Mg-A1) relationships in orthoamphibole-bearing assemblages, and standard geothermobarometry indicate that the gneisses underwent a near-isothermal decompression P-T history (steep positive dP/dT) from ± 8 kbar and 700°C to <5.5kbar and 650°C. This uplift path is correlated with the general effects of Rayner Complex metamorphism and deformation which occurred after 1100 Ma in a major erogenic belt south of Casey Bay.  相似文献   

15.
Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica (Ellis et al. 1980) were metamorphosed at 8–10 kb pressure, 900°-980° C under very low conditions. Retrograde mineral coronas in these rocks record subsequent cooling from the peak of metamorphism at approximately constant pressure. The inferredP-T cooling-uplift path differs markedly from that evident in many other granulite terrains.Present garnet-cordierite geothermometers imply equilibration at temperatures of 500°–600° C, well within the kyanite stability field. These temperatures are inconsistent with the presence of sillimanite and the high temperature stability fields of the actual mineral assemblages. Examination of available garnetcordierite experimental data suggests a possible large increase in the Gt-Cd Fe-MgK D with increasingX Mg of the cordierite (and pressure). New experiments designed to test this possibility were inconclusive because of the failure to attain satisfactory equilibrium, even at 1,000° C.Possible reasons for the exposure of these unusual granulites in Enderby Land are considered. Although they formed at much higher temperatures than other granulites exposed on a regional scale, suchP-T conditions are not exceptional for the base of the crust. Instead, the unusual isobaric cooling to low temperatures followed by uplift to the surface which these granulites are inferred to have undergone is considered of importance. The unusual tectonic conditions are reflected in the disctinctive type of mineral reaction coronas found in these rocks. The common occurrence elsewhere of mineral reaction during uplift, and the role of anatexis during uplift in obliterating such high temperature assemblages elsewhere in the world are considered.  相似文献   

16.
Ion microprobe U-Th-Pb analyses of zircons from a granulite-grade orthogneiss from Mount Sones, Enderby Land, Antarctica, record the ages of four principal events in the history of the gneiss, three of which already have been recognized through previous isotopic dating of other samples. The structure of the zircons indicates at least four different stages of growth. The several zircon ages were obtained by grouping the analyses according to the stage they represented in the observed stratigraphic succession of growth and thereby defining separate U-Pb discordance patterns for each stage. The stratigraphically oldest zircon (rare discrete cores) is indistinguishable in age from the most common, euhedrally zoned zircon. Both crystallized when the tonalitic precursor of the orthogneiss was emplaced into the crust 3927±10 Ma ago, making the orthogneiss currently the oldest known terrestrial rock. The outer parts of most grains and some whole grains recrystallized at 2948±31/–17 Ma, during or immediately after possibly 100 Ma of high granulite grade metamorphism. The recrystallized zircon was isotopically disturbed by tectonism associated with reactivation of the southern margin of the Napier Complex at 1000 Ma. In the intervening time, at 2479±23 Ma, the cores and zoned zircon suffered a major isotopic disturbance involving movement of radiogenic Pb which left most of the crystals with radiogenic Pb deficiencies, but produced local radiogenic Pb excesses in others. A new generation of zircon, characterized by very high Th/U and low U, grew at that time. That event — deformation and possibly a minor rise in temperature — produced widespread perturbations of other isotopic systems throughout the Napier Complex.  相似文献   

17.
A dacite sample from a nuée ardente deposit at Pitons du Carbet, Martinique, contained cummingtonite, orthopyroxene, quartz, magnetite, and ilmenite as phenocrysts, and thus was suitable for evaluation of the conditions of crystallization of nuée ardente materials according to the method of Ewart et al. (1971). The estimations were obtained with the aid of a Fortran IV program, which permitted the operation of all the arrangements between the available microprobe analyses. The results indicated that the phenocrystic association crystallized at moderate temperatures (ca. 750° C), under high oxygen fugacities (> NNO) and total pressures (2.3–4.5 Kb, with a maximal density of points at about 3.5 Kb), and water pressures approximating total pressures. The groundmass Fe-Ti oxides equilibrated at lower temperatures and under relatively increasing oxygen fugacities, the variation of which is tentatively ascribed to the aerial emplacement of the nuée ardente materials. The phenocryst data imply that in the case studied the high fluid pressures characterizing the nuée ardente eruptions were not acquired at a shallow level because of the deep intratelluric stage of crystallization of these differentiated calcalkalic magmas.  相似文献   

18.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

19.
Abstract Granulites at Fyfe Hills in Enderby Land, Antarctica, crystallized at temperatures in excess of 850°C, and possibly as high as 1000°C, and at pressures of 8-10kbar during the mid to late Archaean. A number of features, including repeated retrograde metamorphism at 5.5-8kbar, retrograde reaction textures, and rimward zoning in pressure sensitive systems, suggest that following peak metamorphism the granulites stabilized at a depth of 18-26 km. After stabilization, the granulites cooled near-isobarically to temperatures of 600-700°C. Assuming a total crustal thickness of 35-40 km during this late Archaean interval of isobaric cooling, the peak metamorphic crustal thickness is estimated at 35-56 km. This estimate is significantly less than the 60-70 km obtained by summing the depths of the present levels of exposure (26-34 km) and the thickness of the crust presently beneath Fyfe Hills (approxi-mately 35km) and is, therefore, consistent with independent evidence for extensive post-Archaean thickening of the Enderby Land crust.  相似文献   

20.
We report new occurrences of sapphirine- and corundum-bearing granulites intercalated within orthogneisses at Lachmanapatti and Malappatty in the northern part of Madurai Block. Sapphirine in these localities occurs either as needle-like intergrowth with cordierite and corundum in symplectites and medium- to fine-grained euhderal to subhedral crystals associated with cordierite and corundum (Lachmanapatti) or in association with plagioclase, corundum and gedrite (Malappatty). The sapphirine from Lachmanapatti is highly magnesian (XMg = 0.87-0.94) with higher Cr content (up to 0.9 pfu) as compared with those in other localities in the Madurai Block. The sapphirine-corundum association reported in this study has important bearing on the ultrahigh-temperature metamorphism and exhumation history of the northern Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号