首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present observations of the flare of May 14, 1981, which can be classified as a three-ribbon flare. After a detailed analysis in metric, decimetric, microwave, optical, and X-ray ranges we propose that the event was caused by a reconnection process driven by erupting filament. The energy was liberated in the current sheet above the filament in the region between the erupting flux and the overlying field. It is shown that plasma microinstabilities develop as the plasma enters the current sheet. The observations indicate that during the precursor phase a certain low-frequency turbulence, such as ion-accoustic turbulence had to be present.The reconnection rate was growing due to the increasing tension of the stretched overlying field. It is shown that the reconnection proceeded in the Sonnerup-Petschek regime during the precursor, and changed to the pile-up regime in the fast reconnection phase, when the maximal lateral expansion (50 km s–1) of the H ribbons was observed. The proposed process of reconnection driven by an erupting filament can be applied to three- and four-ribbon flares.  相似文献   

2.
We report the observations of a coronal mass ejection (CME) using the Soft X-ray Telescope on board the Yohkoh Mission. The CME had the familiar three part structure (frontal loop, prominence core and a cavity). The erupting prominence was observed by the Nobeyama radioheliograph. We were able to determine the mass of the CME (2.6 × 1014 g) from X-ray observations which seems to be at the lower end of the range of CME masses reported before from white light observations. This is the first time the mass of a CME has been determined from X-ray observations. The height of onset of the CME was 0.3R. The CME moved much faster than the erupting prominence while its acceleration was smaller than that of the erupting prominence.J. Leonard Culhane  相似文献   

3.
Subramanian  Prasad  Ananthakrishnan  S.  Janardhan  P.  Kundu  M.R.  White  S.M.  Garaimov  V.I. 《Solar physics》2003,218(1-2):247-259
We present the first observations of a solar flare with the GMRT. An M2.8 flare observed at 1060 MHz with the GMRT on 17 November 2001 was associated with a prominence eruption observed at 17 GHz by the Nobeyama radioheliograph and the initiation of a fast partial halo CME observed with the LASCO C2 coronagraph. Towards the start of the eruption, we find evidence for reconnection above the prominence. Subsequently, we find evidence for rapid growth of a vertical current sheet below the erupting arcade, which is accompanied by the flare and prominence eruption.  相似文献   

4.
We study the initiation and development of the limb coronal mass ejection (CME) of 15 May 2001, utilizing observations from Mauna Loa Solar Observatory (MLSO), the Solar and Heliospheric Observatory (SOHO), and Yohkoh. The pre-eruption images in various spectral channels show a quiescent prominence imbedded in the coronal void, being overlaid by the coronal arch. After the onset of rapid acceleration, this three-element structure preserved its integrity and appeared in the MLSO MK-IV coronagraph field of view as the three-part CME structure (the frontal rim, the cavity, and the prominence) and continued its motion through the field of view of the SOHO/LASCO coronagraphs up to 30 solar radii. Such observational coverage allows us to measure the relative kinematics of the three-part structure from the very beginning up to the late phases of the eruption. The leading edge and the prominence accelerated simultaneously: the rapid acceleration of the frontal rim and the prominence started at approximately the same time, the prominence perhaps being slightly delayed (4 – 6 min). The leading edge achieved the maximum acceleration amax 600 ± 150 m s–2 at a heliocentric distance 2.4 –2.5 solar radii, whereas the prominence reached amax 380± 50 m s–2, almost simultaneously with the leading edge. Such a distinct synchronization of different parts of the CME provides clear evidence that the entire magnetic arcade, including the prominence, erupts as an entity, showing a kind of self-similar expansion. The CME attained a maximum velocity of vmax 1200 km s–1 at approximately the same time as the peak of the associated soft X-ray flare. Beyond about 10 solar radii, the leading edge of the CME started to decelerate at a–20 m s–2, most likely due to the aerodynamic drag. The deceleration of the prominence was delayed for 10 –30 min, which is attributed to its larger inertia.  相似文献   

5.
The evolution of the soft X-ray and EUV coronal loops related to the April 15, 1998 solar flare–CME event is studied with multiwavelength observations including hard X-rays (BATSE), microwaves (NoRP, CNAO) and magnetograms (SOHO/MDI), as well as images from Yohkoh/SXT and SOHO/EIT at 195 Å. It is shown that: (1) two soft X-ray and EUV loops rose, crossed and turned bright, (2) near one footpoint of these loops, the background magnetic field decreased, (3) there were similar quasi periodic oscillations in the time profiles of hard X-ray and microwave emissions, which characterized the loop–loop coalescence instability, (4) after the loop–loop reconnection, two new loops formed, the small one stayed at the original place, and the large one ejected out as part of the constructed prominence cloud. Based upon these observations, we argue that the decrease of the background magnetic field near these loops caused them to rise and approach each other, and in turn, the fast loop–loop coalescence instability took place and triggered the flare and the CME.  相似文献   

6.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

7.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

8.
We employ a 2 1/2-dimensional reconnection model to analyse different aspects of the energy release in two-ribbon flares. In particular, we investigate in which way the systematic change of inflow region variables, associated with the vertical elongation of current sheet, affects the flare evolution. It is assumed that as the transversal magnetic field decreases, the ambient plasma-to-magnetic pressure ratio increases, and the reconnection rate diminishes. As the transversal field decreases due to the arcade stretching, the energy release enhances and the temperature rises. Furthermore, the magnetosonic Mach number of the reconnection outflow increases, providing the formation of fast mode standing shocks above the flare loops and below the erupting flux rope. Eventually, in the limit of a very small transversal field the reconnection becomes turbulent due to a highly non-linear response of the system to small fluctuations of the transversal field. The turbulence results in the energy release fragmentation which increases the release efficiency, and is likely to be responsible for the impulsive phase of the flare. On the other hand, as the current sheet stretches to larger heights, the ambient plasma-to-magnetic pressure ratio increases which causes a gradual decrease of the reconnection rate, energy release rate, and temperature in the late phase of flare. The described magnetohydrodynamical changes affect also the electron distribution function in space and time. At large reconnection rates (impulsive phase of the flare) the ratio of the inflow-to-outflow magnetic field strength is much smaller than at lower reconnection rates (late phase of the flare), i.e., the corresponding loss-cone angle becomes narrower. Consequently, in the impulsive phase a larger fraction of energized electrons can escape from the current sheet downwards to the chromosphere and upwards into the corona – the dominant flare features are the foot-point hard X-ray sources and type III radio bursts. On the other hand, at low reconnection rates, more particles stay trapped in the outflow region, and the thermal conduction flux becomes strongly reduced. As a result, a superhot loop-top, and above-the-loop plasma appears, as sometimes observed, to be a dominant feature of the gradual phase.  相似文献   

9.
Gamma-ray emission extending to energies greater than 2 GeV and lasting at least for two hours as well as 0.8–8.1 MeV nuclear line emission lasting 40 min were observed with very sensitive telescopes aboard the GAMMA and CGRO satellites for the well-developed post-flare loop formation phase of the 3B/X12 flare on June 15, 1991. We undertook an analysis of optical, radio, cosmic-ray, and other data in order to identify the origin of the energetic particles producing these unusual gamma-ray emissions. The analysis yields evidence that the gamma-rays and other emissions, observed well after the impulsive phase of the flare, appear to be initiated by prolonged nonstationary particle acceleration directly during the late phase of the flare rather than by a long-term trapping of energetic electrons and protons accelerated at the onset of the flare. We argue that such an acceleration, including the acceleration of protons up to GeV energies, can be caused by a prolonged post-eruptive energy release following a coronal mass ejection (CME), when the magnetic field above the active region, strongly disturbed by the CME eruption, relaxes to its initial state through magnetic reconnection in the coronal vertical current sheet.  相似文献   

10.
We present detailed observations of the formations of four distinct coronal dimmings during a flare of 17 September 2002, which was followed by an eruption of a huge coronal loop system, and then an over-and-out partial halo coronal mass ejection (CME), with the same direction as the loop system eruption but laterally far offset from the flare site. Among the four dimmings, two compact ones were symmetrically located in the opposite polarity regions immediately adjacent to the highly sheared magnetic polarity inversion line in the flare region, and hence were probably composed of bipolar double dimmings due to a flux-rope eruption and represented its evacuated footpoints. However, another nearby compact dimming and a remote diffuse one were formed in the opposite polarity footpoint regions of the eruptive loop system, and thus probably consisted of a pair of dimmings magnetically linked by the erupting loop system and also indicated its evacuated footpoints. The loop system might have played a role in guiding the erupting flare field and producing the over-and-out CME, but its eruption might simply have been pushed out by the erupting flare field, because there was no reconnection signature between them. From comparison with a derived potential-field source-surface (PFSS) magnetic configuration, our observations consistently suggest that the dimmings were formed in pairs and originated from the eruptions of the two different magnetic systems. We thus define them as “quadrupolar dimmings.”  相似文献   

11.
We analyze the relationship between the acceleration of coronal mass ejections (CMEs) and the energy release in associated flares, employing a sample of 22 events in which the CME kinematics were measured from the pre-eruption stage up to the post-acceleration phase. The data show a distinct correlation between the duration of the acceleration phase and the duration of the associated soft X-ray (SXR) burst rise, whereas the CME peak acceleration and velocity are related to the SXR peak flux. In the majority of events the acceleration started earlier than the SXR burst, and it is usually prolonged after the SXR burst maximum. In about one half of the events the acceleration phase is very closely synchronized with the fastest growth of the SXR burst. An additional one quarter of the events may be still considered as relatively well-synchronized, whereas in the remaining quarter of the events there is a considerable mismatch. The results are interpreted in terms of the feedback relationship between the CME dynamics and the reconnection process in the wake of the CME.  相似文献   

12.
Images of an east-limb flare on 3 November 2010 taken in the 131 Å channel of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide a convincing example of a long current sheet below an erupting plasmoid, as predicted by the standard magnetic reconnection model of eruptive flares. However, the 171 Å and 193 Å channel images hint at an alternative scenario. These images reveal that large-scale waves with velocity greater than 1000 km?s?1 propagated alongside and ahead of the erupting plasmoid. Just south of the plasmoid, the waves coincided with type-II radio emission, and to the north, where the waves propagated along plume-like structures, there was increased decimetric emission. Initially, the cavity around the hot plasmoid expanded. Later, when the erupting plasmoid reached the height of an overlying arcade system, the plasmoid structure changed, and the lower parts of the cavity collapsed inwards. Hot loops appeared alongside and below the erupting plasmoid. We consider a scenario in which the fast waves and the type-II emission were a consequence of a flare blast wave, and the cavity collapse and the hot loops resulted from the break-out of the flux rope through an overlying coronal arcade.  相似文献   

13.
Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.  相似文献   

14.
Magnetic reconnection at the photospheric boundary is an essential part of some theories for prominence formation. We consider a simple model for reconnection in this region. Parameters of the reconnecting current sheet are expressed in terms of the concentration and temperature of the outside dense and cold plasma, magnetic field intensity, and velocity of convective flows at the photosphere. The reconnection process is shown to be most efficient in a layer several hundred kilometers thick coinciding with the temperature minimum region of the solar atmosphere. The calculated upward flux of matter through the current sheet ( 1011–1012 g s–1) is amply sufficient for prominence formation in the upper chromosphere or lower corona.  相似文献   

15.
Innes  D.E.  Inhester  B.  Srivastava  N.  Brekke  P.  Harrison  R.A.  Matthews  S.A.  Noëns  J.C.  Schmieder  B.  Thompson  B.J. 《Solar physics》1999,186(1-2):337-361
The structure and dynamics of the initial phases of a coronal mass ejection (CME) seen in soft X-ray, extreme ultraviolet and optical emission are described. The event occurred on the SW limb of the Sun in active region AR 8026 on 9 April 1997. Just prior to the CME there was a class C1.5 flare. Images taken with the Extreme Ultraviolet Imaging Telescope (EIT) reveal the emergence of a candle-flame shaped extreme ultraviolet (EUV) cavity at the time of the flare. Yohkoh images, taken about 15 min later, show that this cavity is filled with hot X-ray emitting gas. It is most likely that this is the site of the flare. Almost simultaneous to the flare, an H surge or small filament eruption occurs about 50 arc sec northwards along the limb from the EUV cavity. At both the site of the core of the hot, EUV cavity and the filament ejection are X-ray jets. These jets seem to be connected by hot loops near their bases. Both jets disappear within a few minutes of one another.Clear evidence of the CME first appeared in the Large Angle Spectrometric Coronagraph (LASCO) and EIT images 40 min after the flare and onset of the filament ejection. It seems to come from a region between the two X-ray jets. This leads to the speculation that magnetic field reconnection near one footpoint of a loop system triggers reconnection near its other footpoint. The loop system is destabilized and ultimately gives rise to the CME. This possibility is supported by magnetic field and H images taken when the active region was at disk center which show that the active region had a double bipole structure with dark H filaments between the bipoles.  相似文献   

16.
Lines of magnetic force, computed under the assumption that the solar corona is free of electric currents, have been compared with loop prominence systems associated with three flares in August, 1972. The computed fields closely match the observations of loops at a height of 40000 km at times 3–4 h after onset of the associated flares. Inferred magnetic field intensities in the loops range from 1300 G where the loops converge into a sunspot to 50–80 G at 40 000 km above the photosphere. The first-seen and lowest-lying loops are sheared with respect to the calculated fields. Higher loops conform more closely to the current-free fieldlines. A model of Barnes and Sturrock is used to relate the degree of shear to the excess magnetic energy available during the flare of August 7. On various lines of evidence, it is suggested that magnetic energy was available to accelerate particles not only during the impulsive phase of the flare, but also during the following 2–3 h. The particle acceleration region seems to be in the magnetic fields just above the visible loops. The bright outer edges of the flare ribbons are identified as particle impact regions. The dense knots of loop prominence material fall to the ribbons' inner edges.On leave from Tel Aviv University, Tel Aviv, Israel.  相似文献   

17.
We investigate the initiation and formation of Coronal Mass Ejections (CMEs) via a detailed two-viewpoint analysis of low corona observations of a relatively fast CME acquired by the SECCHI instruments aboard the STEREO mission. The event which occurred on 2 January 2008, was chosen because of several unique characteristics. It shows upward motions for at least four hours before the flare peak. Its speed and acceleration profiles exhibit a number of inflections which seem to have a direct counterpart in the GOES light curves. We detect and measure, in 3D, loops that collapse toward the erupting channel while the CME is increasing in size and accelerates. We suggest that these collapsing loops are our first evidence of magnetic evacuation behind the forming CME flux rope. We report the detection of a hot structure which becomes the core of the white light CME. We observe and measure unidirectional flows along the erupting filament channel which may be associated with the eruption process. Finally, we compare these observations to the predictions from the standard flare-CME model and find a very satisfactory agreement. We conclude that the standard flare-CME concept is a reliable representation of the initial stages of CMEs and that multi-viewpoint, high cadence EUV observations can be extremely useful in understanding the formation of CMEs.  相似文献   

18.
The spectacular prominence eruption and CME of 31 August 2007 are analyzed stereoscopically using data from NASA??s twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The technique of tie pointing and triangulation (T&T) is used to reconstruct the prominence (or filament when seen on the disk) before and during the eruption. For the first time, a filament barb is reconstructed in three-dimensions, confirming that the barb connects the filament spine to the solar surface. The chirality of the filament system is determined from the barb and magnetogram and confirmed by the skew of the loops of the post-eruptive arcade relative to the polarity reversal boundary below. The T&T analysis shows that the filament rotates as it erupts in the direction expected for a filament system of the given chirality. While the prominence begins to rotate in the slow-rise phase, most of the rotation occurs during the fast-rise phase, after formation of the CME begins. The stereoscopic analysis also allows us to analyze the spatial relationships among various features of the eruption including the pre-eruptive filament, the flare ribbons, the erupting prominence, and the cavity of the coronal mass ejection (CME). We find that erupting prominence strands and the CME have different (non-radial) trajectories; we relate the trajectories to the structure of the coronal magnetic fields. The possible cause of the eruption is also discussed.  相似文献   

19.
Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection   总被引:2,自引:0,他引:2  
We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and was initially associated with slow motions of prominence material and a small brightening at one end of the prominence. Shortly afterward, the prominence was accelerated to about 100 km s-1 and was preceded by a bright loop-like structure, which surrounded an emission void, that traveled out into the corona at a velocity of 200–400 km s-1. These three components, the prominence, the dark void, and the bright loops are typical of CMEs when seen at distance in the corona and here are shown to be present at the earliest stages of the CME. The event was later observed to traverse the LASCO coronagraphs fields of view from 1.1 to 30 R⊙. Of particular interest is the fact that this large-scale event, spanning as much as 70 deg in latitude, originated in a volume with dimensions of roughly 35" (2.5 x 104 km). Further, a disturbance that propagated across the disk and a chain of activity near the limb may also be associated with this event as well as a considerable degree of activity near the west limb.  相似文献   

20.
J. Lin  W. Soon 《New Astronomy》2004,9(8):611-628
We describe the evolution of morphological features of the magnetic configuration of CME according to the catastrophe model developed previously. For the parameters chosen for the present work, roughly half of the total mass is nominally contained in the initial flux rope, while the remaining plasma is brought by magnetic reconnection from the corona into the current sheet and from there into the CME bubble. The physical attributes of the difference in the observable features between CME bubble and flare loop system were studied. We tentatively identified distinguishable evolutionary features like the outer shell, the expanding bubble and the flux rope with the leading edge, void and core of the 3-component CME structure. The role of magnetic reconnection is discussed as a possible mechanism for the heating of the prominence material during eruptions. Several aspects of this explanation that need improvement are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号