首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用CAM3.0模式研究东亚地区各种气溶胶浓度增加后对于东亚春季各气候要素,尤其是对降水和春季风场的影响。在模式中通过分别对区域(20~50°N,100~150°E)内黑碳气溶胶浓度单独加倍、硫酸盐气溶胶浓度单独加倍、两种气溶胶浓度同时加倍的实验方法,探讨不同气溶胶浓度变化在东亚春季气候变化中的具体作用。结果表明:在春季,3种气溶胶浓度增加方式都使得东亚地区表现出降水中南部减少北部增加,低层大气西南风异常以及地面温度南部增加北部减少。通过对110~120°E的断面分析发现,硫酸盐与黑碳气溶胶在春季首先影响约800 hPa以上大气的温度并通过不同的动力机制影响东亚地区的风场,风场的改变进而导致了云量和降水在东亚北方地区增多而中南部地区减少,并最终使得地面温度表现出东亚中南部地区增温而北方地区相对降温的特征。  相似文献   

2.
Black carbon concentration and weather data were online monitored continuously from March 2008 to February 2009 at the Akedala regional atmosphere station in the arid region of Central Asia. We present the daily, monthly and seasonal variations of BC concentration in the atmosphere and discuss the possible emission sources. Black carbon concentration in this region varies in the range of 43.7–1,559.2?ng/m3. A remarkable seasonal variation of BC in the aerosol was observed in the order of winter?>?spring?>?autumn?>?summer. The peak value of BC appeared at 10:00–13:00 while the lowest one at 7:00–9:00 each day. Air masses backward trajectories show the potential emission sources in the northwest from spring to autumn. Through back trajectory also revealed that BC in winter might be attributed to the emission from the anthropogenic activities, including domestic heating, cooking, combustion of oil and natural gas, and the medium-range transport from those cities in northern slope of Tianshan Mountains and Siberia. Some BC aerosols from the arid region of Central Asia were transported to the Pacific Ocean by the Westerlies.  相似文献   

3.
The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison?CGettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year?2000) and the other the pre-industrial conditions (year?1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol??s second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol??s radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.  相似文献   

4.
The mid-Pliocene warm period was the most recent geological period in Earth's history that featured long-term warming.Both geological evidence and model results indicate that East Asian summer winds(EASWs) strengthened in monsoonal China, and that East Asian winter winds(EAWWs) weakened in northern monsoonal China during this period, as compared to the pre-industrial period. However, the corresponding mechanisms are still unclear. In this paper, the results of a set of numerical simulations are reported to analyze the effects of changed boundary conditions on the mid-Pliocene East Asian monsoon climate, based on PRISM3(Pliocene Research Interpretation and Synoptic Mapping) palaeoenvironmental reconstruction. The model results showed that the combined changes of sea surface temperatures, atmospheric CO2 concentration,and ice sheet extent were necessary to generate an overall warm climate on a large scale, and that these factors exerted the greatest effects on the strengthening of EASWs in monsoonal China. The orographic change produced significant local warming and had the greatest effect on the weakening of EAWWs in northern monsoonal China in the mid-Pliocene. Thus,these two factors both had important but different effects on the monsoon change. In comparison, the effects of vegetational change on the strengthened EASWs and weakened EAWWs were relatively weak. The changed monsoon winds can be explained by a reorganization of the meridional temperature gradient and zonal thermal contrast. Moreover, the effect of orbital parameters cannot be ignored. Results showed that changes in orbital parameters could have markedly affected the EASWs and EAWWs, and caused significant short-term oscillations in the mid-Pliocene monsoon climate in East Asia.  相似文献   

5.
Summary The influence of the Indian Ocean Zonal Mode on the extreme summer monsoon rainfall over East Asia (China, Korea, Japan) has been investigated applying simple statistical techniques of correlation and composite analysis. While the observed rainfall data are used as a measure of rainfall activity, the NCEP-NCAR Reanalysis data are used to examine the circulation features associated with the extreme monsoon phases and the dynamics of the zonal mode – monsoon variability connections. The data used covers the period 1960 to 2000.The equatorial Indian Ocean is dominated by westerly winds blowing towards Indonesia. However, during the positive phase of the zonal mode, an anomalous, intensified easterly flow prevails, consistent with the positive (negative) sea surface temperature anomalies over the western (southeastern) equatorial Indian Ocean. This positive phase of the zonal mode enhances summer monsoon activity over China, but suppresses the monsoon activity over the Korea-Japan sector, 3 to 4 seasons later. The relationship is more consistent and stronger over the Korea-Japan region than over China.The Indian Ocean influences the monsoon variability over East Asia via the northern hemisphere mid-latitudes or via the eastern Indian Ocean/west Pacific route. The monsoon-desert mechanism induces strong subsidence northwest of India due to the anomalous convection over the Indian Ocean region associated with the positive phase of the zonal mode. This induces a zonal wave pattern over the mid-latitudes of Asia propagating eastwards and displacing the north Pacific subtropical high over East Asia. The warming over the eastern Indian Ocean/west Pacific inhibits the westward extension of the north Pacific sub-tropical high. The location and shape of this high plays a dominant role in the monsoon variability over East Asia. The memory for delayed impact, three to four seasons later, could be carried by the surface boundary conditions of Eurasian snow cover via the northern channel or the equatorial SSTs near the Indonesian Through Flow via the southern channel.  相似文献   

6.
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.  相似文献   

7.
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.  相似文献   

8.
利用2006—2016年夏季中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)气溶胶和云资料以及热带降水测量计划(Tropical Rainfall Measuring Mission,TRMM)降水数据,分析了中国8个典型地区气溶胶、云和降水的时空分布特征,探讨了气溶胶与云和降水的相互关系。结果表明:中国8个典型地区夏季平均气溶胶光学厚度(Aerosol Optical Depth,AOD)、云光学厚度(Cloud Optical Depth,COD)、云水路径(Cloud Water Path,CWP)、水云云滴有效粒子半径(Cloud Effective Radius Water,CERW)、冰云云滴有效粒子半径(Cloud Effective Radius Ice,CERI)和降水强度变化范围分别为0.21—1.05、15.01—24.02、151.98—219.20 g·m-2、12.93—15.37 μm、28.85—39.14 μm和0.44—8.54 mm·d-1;黄土高原和四川盆地AOD有显著降低趋势,年倾向分别为-2.30%和-3.20%,长江三角洲COD年增幅为29.11%,华北平原、长江三角洲和珠江三角洲CERI及塔克拉玛干沙漠CERW变化趋势分别为-21.60%、-15.77%、-18.94%和-10.31%;AOD与COD和CWP呈正相关,与云滴有效粒子半径(Cloud Effective Radius,CER)关系较为复杂,受水汽影响较大,在云层含水量较低的情况下,CERI(CERW)与AOD呈负(正)相关,而在云层含水量较高的情况下,二者呈正(负)相关;气溶胶和降水关系复杂,整体来看,气溶胶促进了中国地区的夏季降水。  相似文献   

9.
Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as “regressed” radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.  相似文献   

10.
A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached ?3.47 W m?2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.  相似文献   

11.
The distributions and daily variations of the apparent heat source (Q1) and the apparent moisture sink (Q2) in East China in the early summer of 1984 have been estimated with the budget calculation method. It has been found that during this time period, there occurred three significant episodes of strong heating that corresponded to the three events of heavy rainfalls prior to, during and post to the onset of mei-yu (plum rains). The peaks of Q1 were generally found at 200 hPa, with the heating rate of 6°-10°C/day observed, while the peaks of Q2 were located at about 700 hPa, with their magnitudes being 12o-20°C/day. The vertical distribution of Q1 and Q2 indicates the importance of eddy vertical flux. In other words, the convective activity plays a very important role in the processes of precipitation in East Asia in the early summer. This result is different from the finding obtained by Luo and Yanai (1984) in their calculation of the case of 1979. They pointed out that in the early summer of 1979 the continuous precipitation dominated the region of East China.Among the three terms of Q1 and Q2, the maximum contribution was made from the adiabatic term, which was caused by strong ascending motion. The adiabatic cooling produced by this term may compensate for the heating created by the condensation process.In addition, it has been revealed that the three significant heating processes were closely related to the seasonal transition from spring to summer in East China. One major synoptic event associated with it showed up in the sudden jump of the upper tropospheric, subtropical jet-stream from 30°N to 40°N. So did the plane-tary frontal zone in East China.  相似文献   

12.
利用山东惠民国家基准气候站2018年12月—2019年11月的黑碳质量浓度、常规气象观测资料以及 GDAS 数据,研究了该地区黑碳气溶胶的变化特征,并基于后向轨迹模型对其潜在源区进行了分析。研究结果表明: 1)观测期间,黑碳质量浓度平均值为 3.22 µg ? m-3,季节变化呈冬、春季高,夏、秋季低的特点;春、夏、秋季黑碳质量浓度的高频值在 2 µg ? m-3 以内,冬季的高频值在 6 µg ? m-3 以上。2)黑碳质量浓度日变化呈双峰结构,峰值分别出现在 06:00—08:00 和 19:00—21:00,谷值出现于 13:00—15:00。3)降雨和风对黑碳质量浓度有明显影响。非降雨期黑碳质量浓度是降雨期的 2.8 倍;当风速小于 3 m ? s-1 时,黑碳质量浓度随风速增大而减小;冬季在西南西方向、春季在正南方向过来的气团易造成黑碳质量浓度高污染。4)惠民气流输送的季节变化特征明显。春、秋、冬季来自鲁中、河北和苏北等周边地区的气流所占比例较高,对应黑碳质量浓度高值;夏季来自海洋方向的气流占比较高,对应的黑碳质量浓度较低。  相似文献   

13.
我国和东亚地区硫化物跨边界输送态势研究   总被引:9,自引:0,他引:9  
本文利用污染物三维欧拉长距离输送实用模式,较详细地模拟了我国和东亚地区硫化物跨地区、跨边界输送态势,分析了东亚地区硫化物输送通量随高度、季节变化的分布特点,讨论了不同地区边界上硫化物的跨边界输送通量及流的收支平衡,并给出了我国和周边国家和地区之间硫化物的相互输送量。结果表明,我国向外输送的硫化物占周边国家和地区总硫沉降的比例并不大,各地区硫沉降的主要来源是自身排放;硫化物长距离输送中硫酸根的输送占重要地位,各地区硫酸根沉降中的外来比例较大。我们初步总结出一个东亚地区硫化物输送的概念模式:在低层,夏季主要自西南向东北输送,冬季长江以北自北向南输送,长江以南由西南向北输送,并在长江中下游地区形成一个较强的硫化物辐合带,在高层,无论冬夏均由西向东输送,并随高空带变化,中层为二者的过渡,春秋季的情形界于冬夏之间,偏向冬季。  相似文献   

14.
15.
Winter Asia Jetstream and Seasonal Precipitation in East China   总被引:9,自引:0,他引:9  
WinterAsiaJetstreamandSeasonalPrecipitationinEastChina¥LitrngPingde(梁平德)andLiuAixia(刘爱霞)WinterAsiaJetstreamandSeasonalPrecipi?..  相似文献   

16.
17.
A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg?m?3, 8 mg?m?2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and ?0.95 W?m?2, respectively, leading to a net RF of ?0.15 W?m?2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC’s indirect effect. Further, the net effect of BC might cause a decrease of precipitation of ?7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC’s indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC’s direct effect, while changes in surface air temperature and precipitation might be influenced by BC’s indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.  相似文献   

18.
我国的东亚冬季风研究   总被引:8,自引:2,他引:8  
朱乾根 《气象》1990,16(1):3-10
  相似文献   

19.
Black carbon aerosols plays an important role in the earth's radiative balance and little is known of their concentrations, distributions, source strength, and especially the aerosol chemistry of the developing world. The present study addresses the impact of back carbon aerosols on different atmospheric species like CO and tropospheric ozone over an urban environment, namely Hyderabad, India. Ozone concentration varies from 14 to 63 ppbv over the study area. Diurnal variations of ozone suggest that ozone concentration starts increasing gradually after sunrise, attaining a maximum value by evening time and decreasing gradually thereafter. Black carbon (BC) aerosol mass concentrations varies from 1471 to 11,175 ng m−3. The diurnal variations of BC suggest that the concentrations are increased by a factor of 2 during morning (06:00–09:00 h) and evening hours (18:00 to 22:00 h) compared to afternoon hours. Positive correlation has been observed between BC and CO (r2=0.74) with an average slope of 6.4×10−3 g BC/g CO. The slope between black carbon aerosol mass concentration and tropospheric ozone suggests that every 1 μg m−3 increase in black carbon aerosol mass concentration causes a 3.5 μg m−3 reduction in tropospheric ozone. The results have been discussed in detail in the paper.  相似文献   

20.
It is well known that the emissions of hot gases from various power stations and other industrial sources in the regional atmosphere cause decrease in rainfall around these complexes. To overcome this shortage, one method is to introduce artificially conducive aerosol particles in the atmosphere using aeroplane to increase rainfall. To prove the feasibility of this idea, in this paper, a nonlinear mathematical model is proposed involving five dependent variables, namely, the volume density of water vapour, number densities of cloud droplets and raindrops, and the concentrations of small and large size conducive aerosol particles. It is assumed that two types of aerosol particles are introduced in the regional atmosphere, one of them is of small size CCN type which is conducive to increase cloud droplets from vapour phase, while the other is of large size and is conducive to transform the cloud droplets to raindrops. The model is analyzed using stability theory of differential equations and computer simulation. The model analysis shows that due to the introduction of conducive aerosol particles in the regional atmosphere, the rainfall increases as compared to the case when no aerosols are introduced in the atmosphere of the region under consideration. The computer simulation confirms the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号