首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zusammenfassung Im ersten Teil der Arbeit werden der Einfluß von Temperaturänderungen auf die Anzeige des Piche-Evaporimeters und der Einfluß des Lochdurchmessers im Filterpapier auf den Unterdruck im Rohr untersucht. In beiden Fällen ergibt sich eine sehr gute Übereinstimmung zwischen dem experimentellen Ergebnis und entsprechenden theoretischen Überlegungen.Messungen der Verdunstung des Piche-Evaporimeters, bei denen die Strahlung durch eine äquivalente elektrische Heizung des Filterpapiers ersetzt wurde, erlauben zusammen mit den Messungen der übrigen für die Verdunstung maßgebenden Parameter die Bestimmung der Wärmeübergangszahl des Filterpapierblättchens des Piche-Evaporimeters als Funktion der Windgeschwindigkeit. Das dabei gefundene Potenzgesetz, welches weitgehend den aus der Literatur bekannten Formeln für die Wärmeübergangszahl folgt, ermöglicht es, die Verdunstung und die Mitteltemperatur des Filterpapiers des Piche-Evaporimeters mit Hilfe der vonG. Hofmann angegebenen Formeln und der in ihnen auftretenden meteorologischen Parameter (Lufttemperatur, Windgeschwindigkeit, Strahlungsbilanz, relative Luftfeuchtigkeit) zu errechnen. Auch hier ergibt sich eine sehr gute Übereinstimmung der berechneten Werte mit den gemessenen, so daß die Abhängigkeit der Meßwerte eines Piche-Evaporimeters von den für dessen Anzeige maßgebenden Parametern hinreichend geklärt erscheint.
Summary First are investigated the effect of temperature variations on the readings of a Piche evaporimeter, and the effect of the size of the hole pierced into the filter paper on the underpressure within the tube. In both cases good agreement is found between experimental results and theoretical considerations.The heat transfer coefficient of the filter paper as a function of wind velocity was ascertained by observing evaporation and the pertinent parameters; radiation, however, was replaced by an equivalent electric heating of the filter paper. The relationship follows a power law and corresponds largely with other formulae given in the literature. By applyingG. Hofmann's formulae (containing air temperature, wind velocity, net radiation, and relative humidity) the relationship can be used to calculate the mean temperature of the filter paper and the amount of evaporation. The agreement between calculated and observed results is very good. It seems, therefore, that the relationship between the Piche evaporimeter readings and the meteorological parameters governing its reactions is sufficiently clarified.

Résumé On étudie tout d'abord l'influence des variations de température sur les indications de l'évaporimètre de Piche, ainsi que l'effet du diamètre du trou du papier-filtre sur la dépression du tube. Dans les deux cas la théorie et l'expérience sont parfaitement d'accord.En mesurant ensuite l'évaporation de l'instrument exposé à un chauffage électrique équivalent à la radiation et en tenant compte des autres paramètres, on peut déterminer le coefficient de transfert de chaleur du filtre en fonction de la vitesse du vent. La loi exponentielle trouvée qui correspond bien aux formules connues pour le transfert de chaleur, permet alors de calculer l'évaporation et la température moyenne du filtre à l'aide des formules données parG. Hofmann et des paramètres météorologiques (température de l'air, vitesse du vent, bilan radiatif, humidité relative). Là aussi, l'accord entre la théorie et l'expérience est très satisfaisant, ce qui établit convenablement et de façon suffisante le lien entre les indications de l'évaporimètre de Piche et les conditions d'expérience.

Mit 10 TextabbildungenTeil einer Diplomarbeit für Meteorologie an der Universität München (1959).  相似文献   

2.
Zusammenfassung Die Zahlenwerte des horizontalen Wärmetransportes durch Großaustausch, die man bisher kennt, sind schwierig zu deuten; insbesondere gilt dies für die Umkehr des meridionalen Stromes in der mittleren Troposphäre. Es wird deshalb ein Verfahren angegeben, aus den Radiosondenaufstiegen eines Stationsdreiecks die Wärmebilanz in der freien Atmosphäre zu bestimmen. Für das Jahr von April 1949 bis März 1950 wird in einem England, die Nordsee und Nordwestdeutschland überdeckenden Gebiet eine Abkühlung der Troposphäre von 0,5°/Tag am Boden, zunehmend auf 1,8°/Tag bei 300 mb gefunden; die Stratosphäre zeigt eine leichte Erwärmung. Über dem Ozeangebiet westlich Englands besteht am Boden Erwärmung von 0,4°/Tag, in 300 mb Abkühlung von 1,3°/Tag. In beiden Gebieten ist der Wärmeentzug größer als nach den bekannten Abschätzungen der Wärmehaushaltsüberschüsse zu erwarten war.Eine ähnliche Bestimmung des Feuchtigkeitshaushaltes erlaubt die Angabe der Differenz Verdunstung minus Niederschlag, die sich für das Nordseegebiet im Jahresmittel negativ, für den Nordostatlantik positiv ergibt; die Jahresgänge beider Gebiete sind nahezu entgegengesetzt. Die Verdunstung selbst hat über der Nordsee das Maximum im Sommer, das Minimum im Spätwinter, über dem NE-Atlantik das Maximum etwa im November, das Minimum im Mai und Juni.
Summary The numerical values of the horizontal heat transport by large scale mass exchange, as known until now, are difficult to interpret; this is the case particularly for the reversal of the meridional stream in the middle troposphere. Therefore a method is described to determine the heatbalance in the free atmosphere from ascents of radio-sondes in a triangle of stations. A cooling of the troposphere of 0.5°/day at ground, increasing to 1.8°/day at 300 mb, is found in the period from April 1949 to March 1950 in an area covering England, the North Sea and northwestern Germany; the stratosphere shows a slight warming. Above the ocean west of England there is a warming of 0.4°/day at ground and a cooling of 1.3°/day at 300 mb. In both these areas loss of heat is greater than was to be expected from the hitherto known estimates of the balance of thermal economy.A similar determination of the economy of humidity yields the difference between evaporation and precipitation which results, in the annual mean, to be negative for the North Sea area and positive for the northeastern Atlantic Ocean; the annual variation of these two areas is almost contrary. Evaporation over the North Sea has its maximum in summer, its minimum towards the end of winter; over NE-Atlantic maximum is roughly in November, minimum in May and June.

Résumé Il est difficile d'interpréter les valeurs numériques du transport horizontal de chaleur dû à l'échange turbulent à grande échelle; cela est particulièrement vrai de l'inversion du flux méridien dans la troposphère moyenne. On expose donc ici un procédé capable de déterminer le bilan thermique dans l'atmosphère libre à partir de radiosondages de trois stations. On trouve que d'avril 1949 à mars 1950, dans une région comprenant l'Angleterre, la Mer du Nord et le Nord-Ouest de l'Allemagne, il y a eu refroidissement de la troposphère de 0,5° par jour au sol et atteignant 1,8° par jour au niveau de 300 mb; il y a eu léger réchauffement de la stratosphère. Sur l'Océan à l'Ouest de l'Angleterre, il y a èu au sol un réchauffement de 0,4° par jour et un refroidissement de 1,3° par jour à 300 mb. Dans les deux régions la perte de chaleur est plus grande que ne le voudraient les estimations connues des excédents du bilan thermique.Une détermination analogue de l'humidité fournit la différence entre l'évaporation et les précipitations qui, dans la Mer du Nord, est négative en moyenne annuelle, positive pour le Nord-Est atlantique. Les marches annuelles des deux domaines sont à peu près contraires. L'évaporation présente un maximum en été sur la Mer du Nord et un minimum à la fin de l'hiver; sur le Nord-Est atlantique le maximum est à peu près en novembre et le minimum en mai et juin.


Mit 2 Textabbildungen.  相似文献   

3.
Summary The concept of vegetation as a multi-layered heat exchange system is discussed with reference to measurements in a barley field. These measurements included the monitoring of net radiation at various levels inside the crop and the conducted heat flux in the soil for typical clear and overcast days. The diurnal variations of the components of the heat balance throughout the crop are discussed, computing the combined flux of sensible and latent heat as a remainder term. The results show a complete reversal of the flux of sensible and latent heat from the top of the crop to the soil surface: during the night the surface loses heat by eddy diffusion as well as radiation and during the day it gains heat through both these processes. The total heat exchange between the crop and the atmosphere gives the usual heat gains by eddy diffusion during the night and losses during the day. The radiation absorbed by a layer of vegetation is converted into sensible and latent heat and 80% of the total energy exchange takes place in the upper half of the crop. The magnitude of the exchange process falls off rapidly with depth in the crop.
Zusammenfassung Die Vegetation wird als mehrschichtiges System im Hinblick auf den Wärmeaustausch betrachtet, wobei Messungen in einem Gerstenfeld verwendet werden. Die Messungen umfaßten die Registrieuung der Wärmebilanz in verschiedenen Höhen im Getreidestand und des Wärmeflusses im Boden an typischen klaren und bedeckten Tagen. Der Tagesgang der Komponenten der Wärmebilanz durch die Vegetationsschicht wird untersucht, dabei wird die Summe des Fluesses von fühlbarer und von latenter Wärme als Restglied berechnet. Die Resultate zeigen eine vollkommene Umkehr des Flusses von fühlbarer und latenter Wärme von der Obergrenze des Getreidestandes zum Boden: während der Nacht verliert die Erdoberfläche Wärme sowohl durch turbulenten Austausch wie durch Strahlung, während des Tages nimmt sie durch beide Prozesse Wärme auf. Der gesamte Wärmeastausch zwischen dem Getreidefeld und der Atmosphäre ergibt die gewöhnlichen Wärmegewinne durch turbulenten Austausch bei Nacht und die Wärmeverluste bei Tag. Die von der Vegetationsschicht absorbierte Strahlung wird in fühlbare und latente Wärme umgesetzt, wobei 80% des gesamten Wärmeaustausches in der oberen Hälfte der Vegetationsschicht erfolgen. Die Größe des Austauschprozesses vermindert sich rasch mit der Tiefe in der Vegetationsschicht.

Résumé On considère ici la végétation comme un système à plusieurs strates vis à vis des échanges de chaleur. Pour cela on se sert de mesures effectuées dans un champ d'orge. Ces mesures comprenaient l'enregistrement du bilan de chaleur à différentes hauteurs dans le dit champ ainsi que du flux de chaleur dans le sol à des jours typiques: couverts ou clairs. On étudie l'évolution diurne des composantes du bilan de chaleur au travers de la couche végétale. Pour ce faire, on clacule la somme du flux des chaleurs sensible et latente comme terme final de l'équation. Les résultats montrent une inversion complète du flux de ces deux chaleurs de la surface supérieure du champ jusqu'au sol. Pendant la nuit, la surface du sol perd de la chaleur aussi bien par des échanges turbulents que par rayonnement. Pendant le jour, le sol reçoit de la chaleur par ces deux processus. L'échange total de chaleur entre le champ d'orge et l'atmosphère présente les gains de chaleur ordinaire par turbulence de nuit et les pertes de jour. Le rayonnement absorbé par la couche végétale est transformé en chaleur latente et sensible. 80% de la totalité des échanges de chaleur se passent dans la moitié supérieure de la couche végétale. L'importance des processus d'échange diminue rapidement avec la profondeur de la couche végétale.
  相似文献   

4.
Summary It is concluded from heat balance considerations that in the middle latitudes, the form of the annual variation of evaporation from nonshallow lakes is a double wave. In addition to the accepted winter minimum of evaporation, a second (but not necessarily secondary) minimum of evaporation occurs in spring or in summer about the time when the rate of heating of the lake waters is at its greatest. Thus the annual variation of evaporation resembles that from the oceans in similar latitudes except for a phase difference whose magnitude is to an extent an inverse function of the lake depth. In support of the above statements, observational data and results of studies are cited from the U. S. A., Switzerland and Israel.
Zusammenfassung Aus Wärmebilanzbetrachtungen wird geschlossen, daß in mittleren Breiten der Jahresgang der Verdunstung von nicht seichten Seen eine Doppelwelle aufweist. Zusätlich zum bekannten Winterminimum der Verdunstung tritt ein zweites (aber nicht notwendig sekundäres) Minimum der Verdunstung im Frühling oder im Sommer zur Zeit der raschesten Erwärmung des Seewassers auf. Damit ähnelt der Jahresgang der Verdunstung der Seen dem der Verdunstung von Ozeanen gleicher Breiten bis auf eine Phasenverschiebung, deren Größe zu einem gewissen Grad eine invese Funktion der Seetiefe ist. Zur Stütze dieser Ansicht werden Beobachtungsdaten und Untersuchungsergebnisse aus USA, aus der Schweiz und aus Israel angeführt.

Résumé En considération du bilan de chaleur appliqué aux latitudes moyennes, on est arrivé à la conclusion que, dans les lacs qui ont une certaine profondeur, la variation annuelle d'évaporation est une onde double. En addition au minimum hibernal accepté d'évaporation, un second (mains pas necessairement secondaire) minimum d'évaporation se trouve en printemps ou en été environ au temps où la vitesse de réchauffement des eaux de lac atteint son maximum. Ainsi la variation annuelle d'évaporation ressemble à celle des océans de latitude similaire, à l'exception d'une différence de phase dont la magnitude est jusqu'à un point une fonction inverse de la profondeur du lac. Pour supporter la thèse ci-dessus, des données observées et les résultats d'études faites aux Etats-Unis, en Suisse et en Israël sont citées.


Mit 1 Figure.  相似文献   

5.
Zusammenfassung In der vorliegenden Untersuchung werden weitere glazial-meteorologische Beobachtungen am Chogo Lungma-Gletscher anläßlich der Frankfurter Himalaya-Expedition 1955 bearbeitet. Die Beobachtungen umfassen: Ablation, Windgeschwindigkeit in 20, 100 und 300 cm Höhe. Temperatur und Feuchtigkeit in 20 und 100 cm Höhe, Oberflächentemperatur, Temperaturdifferenz 20–100 cm, Niederschlag, Verdunstung, sowie den in einer früheren Arbeit publizierten kurz- und langwelligen Strahlungsumsatz an der Gletscheroberfläche.Die erste Meßreihe (Station I, Seehöhe zirka 4000 m) erfaßt das Abschmelzen eines Restes von Winterfirn (51 cm) im Verlauf von 6 Tagen. Die zweite Meßreihe (Station II, Seehöhe zirka 4300 m) beschreibt die Ablation von insgesamt 120 cm Blankeis mit einer mittleren Albedo von 0,30. Beide Stationen liegen unterhalb der Firnlinie auf der flachen Gletscherzunge.Der Tagesgang der Ablation ist ähnlich wie in den Alpen und läßt auch hier a priori auf einen sehr hohen Anteil der Strahlungsablation schließen. Der Gletscherwind des Chogo Lungma ist besonders schwach, was sich vermutlich aus seinen morphologischen Eigenheiten (Mustagh-Typ) erklärt. Eine Erklärung seines täglichen Ganges ergibt sich aus der Differenz Lufttemperatur-Eistemperatur.Die mittleren vertikalen Verteilungen von Windgeschwindigkeit, Temperatur und Feuchtigkeit lassen sich gut durch logarithmische Gesetze annähern. Die vertikalen Ströme von fühlbarer und latenter Wärme werden mit Hilfe des adiabatischen Austauschkoeffizienten berechnet, weil die Berücksichtigung der Stabilität nachLettau die Anwendung nicht-logarithmischer Gesetze für die Temperatur- und Feuchteverteilung erfordern würde (höhenkonstanter Wärmestrom) und die Abweichung in den untersten Dezimetern klein ist.Der mittlere tägliche Wärmehaushalt an den Stationen I und II ist in Tabelle 6 gegeben. Die Übereinstimmung zwischen beobachteter und berechneter Ablation ist befriedigend und rechtfertigt die angewendeten Methoden. Der Anteil der Strahlung an der Ablation beträgt 88% (Firn) und 95% (Blankeis). Wie zu erwarten, ist die konvektive Wärmezufuhr von der gleichen Größenordnung wie auf anderen temperierten Gletschern. Die Ablation durch Verdunstung ist verschwindend klein.Die Rolle der Verdunstung im glazialen Wärmehaushalt wird im Zusammenhang mit dem Büßerschnee-Problem näher diskutiert. Es ergibt sich, daß die Verdunstung für den glazialenWärmehaushalt unter Umständen eine gewisse Bedeutung erlangen kann, für denMassenhaushalt (Verdunstungsablation) wegen ihres hohen Wärmebedarfs im Ablationsgebiet von Gletschern der gemäßigten Zone aber immer weit hinter der Schmelzung zurückstehen wird. Eine qualitative Erklärung der Bildung von Büßerschnee ergibt sich auf Grund des unterschiedlichen Wärmehaushalts der Kleinformen der Eisoberfläche.Die Möglichkeiten vereinfachter Wärmehaushaltsmessungen, besonders für Expeditionszwecke, werden unter Berücksichtigung der bisherigen Erfahrungen diskutiert.Schließlich wird das Ergebnis der Wärmehaushaltsmessungen in hoher, mittlerer und niedriger Breite nach allgemeinen Gesichtspunkten verglichen und erneut auf die Bedeutung der sommerlichen Witterung (Albedoänderungen durch temporäre Schneedecken, Sonnenscheindauer) für die Größenänderungen an Gletschern der gemäßigten Zone hingewiesen.
Summary The present paper deals with further glacial-meteorological observations on Chogo Lungma Glacier carried out during the Frankfurter Himalaya-Expedition 1955. These observations comprise: ablation, wind velocity at 20, 100, and 300 cm height, temperature and humidity at 20 and 100 cm height, surface temperature, temperature gradient between 20 and 100 cm, precipitation, evaporation, as well as the short and long wave radiative heat exchange at the surface as published in a previous paper.The first series of measuremnts (Station I, altitude about 4000 m) covers the melting of the remains of winter firn (51 cm) in the course of 6 days. The second series (Station II, altitude about 4300 m) covers the ablation of 120 cm of bare ice with an average albedo of 0,30. Both stations were situated below the firn line on the flat glacier tongue.The daily varation of ablation closely resembles that found in the Alps and indicates a very high percentage of radiative ablation. The glacier wind on Chogo Lungma is exceptionally weak which is probably due to its morphological features (Mustagh-Type). An explanation of the daily course of glacier wind is given by considering the temperature difference between air and ice.The mean vertical distributions of wind velocity, temperature and humidity may well be represented by logarithmic laws. The vertical flux of perceptible and latent heat are calculated by means of the adiabatic Austausch coefficient. To account for stability according toLettau's formula would necessitate the application of non-logarithmic laws for the temperature and humidity distribution in order to give a constant heat flux. However, the deviations in the lowermost decimetres are small.The mean daily heat economy at Stations I and II is given in Table 6. The correspondence between observed and computed ablation is satisfactory and justifies the methods applied. Radiation balance (long and short wave) contributes 88% over firn and 95% over bare ice to the total ablation. As is to be expected, convective heat supply is of the same order of magnitude as on other temperate glaciers. Ablation by evaporation is negligible.The part of evaporation in the glacial heat economy is discussed in connection with the problems of nieve de los penitentes. It is shown that, under certain conditions, evaporation may achieve some importance in thethermal budget but that its importance in themass budget (ablation by evaporation) in the ablation area of temperate glaciers will always be negligible compared to the ablation by melting, due to the great amount of heat required for evaporation. Based upon the small local differences of the heat budget of sun-cupped firn an explanation is given of the formation of nieve de los penitentes.The possibilities of simplified measurements of heat economy, especially on expeditions, are discussed.Finally, the glacial heat budget in high, middle, and lower latitudes is compared, and the predominant importance for glacier shrinkage and advance of summer weather (changes of albedo by temporary snow covers, duration of sunshine) is stressed.

Résumé Les observations glaciologiques et météorologiques effectuées au glacier de Chogo Lungma lors de l'expédition himalayenne de Francfort en 1955 font l'objet ici de nouvelles élaborations. Les mesures concernent: l'ablation, la vitesse du vent à 20, 100 et 300 cm au-dessus du sol, la température et l'humidité à 20 et 100 cm, la température superficielle, la différence de température entre 20 et 100 cm de hauteur, les précipitations, l'évaporation ainsi que l'économie des rayonnements à courtes et longues ondes à la surface du glacier, étudiée dans une publication antérieure.La première série de mesures (Station I, altitude env. 4000 m) comprend la fusion d'un reliquat de névé hivernal (51 cm) en 6 jours. La 2ème série (Station II, 4300 m env.) concerne l'ablation de 120 cm de glace compacte avec un albédo moyen de 0,30. Les deux stations se trouvent au-dessous du névé, sur le plateau glaciaire.La variation diurne de l'ablation est semblable à celle des Alpes et permet là aussi de conclure a priori à une part prépondérante du rayonnement. Le vent du glacier du Chogo Lungma est particulièrement faible ce qui probablement s'explique par ses particularités morphologiques (type Mustagh). Sa variation diurne s'explique par la différence entre la témperature de l'air et celle de la glace.Les distributions verticales moyennes de la vitesse du vent, de la température et de l'humidité peuvent aisément se représenter par des fonctions logarithmiques. Les courants verticaux de chaleur réelle et latente se calculent à l'aide du coefficient d'échange turbulent adiabatique, parce que le recours à la stabilité selonLettau exigerait l'emploi de lois non logarithmiques pour la répartition de la température et de l'humidité (flux de chaleur constant selon la verticale) et parce que l'écart est petit dans les premiers décimètres inférieurs.L'économie thermique diurne moyenne aux stations I et II figure dans le tableau 6. L'accord entre l'ablation observée et calculée est satisfaisant et justifie l'emploi de la méthode. La part du rayonnement dans l'ablation s'élève à 88% (névé) et à 95% (glace compacte). Comme il faut s'y attendre, l'apport convectif de chaleur est du même ordre de grandeur que sur d'autres glaciers des régions tempérées. L'ablation par évaporation est extrêmement faible.Le rôle de l'évaporation dans l'économie thermique des glaciers est discuté en rapport avec le problème de la «neige des pénitents». On constate que l'évaporation peut avoir une certaine importance dans l'économie calorifique du glacier, mais que dans le bilan de masse (ablation par évaporation) son effet reste minime en regard de la fusion, vu les quantités de chaleur mises en jeu dans la zone d'ablation des glaciers tempérés. On peut trouver une explication qualitative de la formation des la «neige des pénitents» dans les différences d'économie calorifique des micro-formes de la surface de la glace. On examine les possibilités de simplifier les techniques des mesure de l'économie calorifique, en particulier pour les expéditions d'exploration.Enfin l'auteur compare les résultats de mesures de l'économie calorifique aux latitudes hautes, moyennes et basses et attire à nouveau l'attention sur l'importance du temps qu'il fait en été (modifications d'albédo par neige fraîche temporaire; durée d'insolation) pour les changements de masse des glaciers des régions tempérées.


Mit 9 Textabbildungen  相似文献   

6.
Zusammenfassung Die Verdunstung in Mogadiscio wird dargestellt und erläutert, und zwar auf Grund direkter Beobachtungen dieser Größe sowie durch Berechnung aus den maßgebenden meteorologischen Faktoren. Es ergibt sich daraus, daß in der benachbarten Zone des Indischen Ozeans ein Überschuß der Verdunstungshöhe über die Niederschlagshöhe im Betrage von 2,5 m/Jahr auftritt. Der jährliche Gang zeigt Höchstwerte in der Periode Dezember bis April und Minima während des Südwestmonsuns. Andere Beispiele von außerhalb der äquatorialen Zone bestätigen, daß die Verdunstung auf der Meeresoberfläche nicht durchwegs ein Maximum im Herbst und Winter und ein Minimum im Sommer aufweist.
Summary A statement and discussion of the evaporation at Mogadiscio is given which is founded both on direct observations and on computations from different meteorological elements. It results that in the adjacent zone of the Indian Ocean an excess of evaporation over precipitation of 2,5 m/year is observed. The annual variation shows maxima in December–April and minima during the SW-monsoon. Other examples outside the equatorial zone confirm that evaporation above the surface of the sea not always has its maximum in autumn and winter and its minimum in summer.

Résumé On expose les conditions d'évaporation à Mogadiscio et on les explique sur la base d'observations directes ainsi que par le calcul à partir des facteurs météorologiques déterminants. On constate dans la zone voisine de l'Océan Indien un excès de la hauteur d'évaporation de 2,5 m par an sur les précipitations. La variation annuelle de l'évaporation présente des valeurs maxima dans la période de décembre à avril, et minima pendant la mousson du Sud-Ouest. D'autres exemples non tirés de la zone équatoriale confirment que l'évaporation à la surface de la mer ne présente pas toujours un maximum en automne et en hiver, ni un minimum en été.
  相似文献   

7.
Summary A report on the glacio-meteorological research program for investigation of the energy economy in the ablation area of the Greenland Ice Cap is given. Experience obtained at the calibration ofR. Schulze's radiation balance meter and of theMoll-Gorczynski solarimeter is communicated.The contribution of the individual components of heat balance to the transformation of energy is estimated for an ablation period of eleven days. The difference between measured and calculated ablation was found to be 4 per cent.The high contribution of radiation and the insignificant contribution of heat convection are characteristic of the transformation of energy of the melting ice surface on the Greenland Ice Cap. Conditions of evaporation are much more frequent than conditions of condensation. Nevertheless, the amount of evaporated ice is only 1.5 per cent of the melted ice. About 10 per cent of the energy available for melting is consumed for the heating of the ice at lower levels.
Zusammenfassung Es wird über ein glazial-meteorologisches Forschungsprogramm zur Untersuchung des Energiehaushaltes im Ablationsgebiet des Grönlandeises berichtet. Einige Erfahrungen bei der Eichung eines Strahlungsbilanzmessers nachR. Schulze und eines SolarimetersMoll-Gorczynski werden mitgeteilt.Der Beitrag der einzelnen Komponenten des Wärmehaushaltes zum Energieumsatz wird für eine elftägige Ablationsperiode abgeschätzt. Es ergibt sich eine Differenz von 4% zwischen gemessener und berechneter Ablation.Für den Energieumsatz der schmelzenden Eisoberfläche des Grönlandeises ist der hohe Beitrag der Strahlung und der geringfügige Beitrag des konvektiv zugeführten Wärmestromes charakteristisch. Die Bedingung für Verdunstung ist weit häufiger erfüllt als die Bedingung für Kondensation. Trotzdem beträgt die verdunstete Eismasse nur 1,5% der geschmolzenen Eismasse. Für die Erwärmung des Eises werden etwa 10% der für Schmelzung verfügbaren Energie verbraucht.

Résumé Exposé concernant le programme de recherches de glaciologie météorologique sur l'économie énergétique dans le domaine de l'ablation de l'islandsis groenlandais. Expériences faites lors de l'étalonnage d'un intégrateur du bilan radiatif d'aprèsR. Schulze et d'un solarimètre deMoll-Gorczynski.L'auteur tente d'estimer les diverses composantes du bilan radiatif dans le processus énergétique d'ablation glaciaire d'une durée de onze jours; un écart de 4% apparaît entre l'ablation mesurée et calculée.La fusion superficielle du glacier est caractérisée par le rôle prépondérant du rayonnement et par un apport très faible de la chaleur fournie par la convection. Les conditions favorables à l'évaporation sont beaucoup plus fréquentes que celles de la condensation; la masse de glace évaporée ne représente cependant qui le 1,5% de la glace fondue. Le 10% de l'énergie disponible pour la fusion est absorbé par le réchauffement de la glace.


Mit 5 Figures  相似文献   

8.
Summary A series of world maps of isanomalies of annual and seasonal global radiation, net radiation, latent heat flux, sensible heat flux, maps of residuals from regression, radiation efficiency, and the Bowen Ratio have been constructed on the data base ofBudyko's Atlas of the Heat Balance of the Earth, 1963. Among the major features observed was the dissimilarity in patterns of isanomalies for the eastern and western sectors of the world's semi-permanent subtropical highs and the great difference between oceanic and continental surfaces.
Zusammenfassung Auf Grund der Werte vonBudykos Atlas der Wärmebilanz der Erde (1963) wurden eine Anzahl Weltkarten der Isanomalien der jährlichen und der jahreszeitlichen Werte für die Globalstrahlung, die totale Strahlungsbilanz, den latenten und den fühlbaren Wärmefluß sowie Karten für die Abweichungen von der Regressionsgeraden, für den Strahlungsgenuß und für den Bowen-Quotienten konstruiert. Als Hauptergebnisse sind die Unähnlichkeit im Verlauf der Isanomalien zwischen dem östlichen und dem westlichen Sektor der semipermanenten Hochdruckgebiete der Subtropen sowie die großen Unterschiede zwischen ozeanischen und kontinentalen Gebieten zu nennen.

Résumé En partant des valeurs publiées parBudyko dans son Atlas du bilan thermique de la Terre (1963), on a établi un certain nombre de cartes du globe. Sur celles-ci, on a reporté les isanomalies des valeurs annuelles et saisonières de la radiation globale, du bilan total radiatif, du flux des chaleurs latente et sensible ainsi que l'écart à la droite de régression pour le rayonnement reçu et pour le rapport de Bowen. Le résultat principal en est l'appararition de dissemblances dans le cours des isanomalies entre les secteurs oriental et occidental des anticyclones semipermanents des zones subtropicales ainsi que de différences importantes entre les régions océaniques et continentales.


With 28 Figures  相似文献   

9.
Summary Covariances of temperature and meridional wind component at 18 stations in the Northern Hemisphere were computed at 2km-intervals from the surface to 28 km. These covariances are proportional to the northward flux of sensible heat resulting from transient eddies. Cross sections of covariance of temperature and meridional wind component during January and July were constructed for 80°W. At this longitude during January a minimum of eddy heat flux occurred near an altitude of 20 km at all latitudes, and in the higher latitudes a sharp increase began somewhere between 18 km and 22 km. Eddy heat fluxes were generally quite small, in the part of the stratosphere below 20 km. A similar pattern was found at the French station of Chateauroux. The layer which separates the regions of small and large eddy heat fluxes appears to coincide with a null layer described byFaust. However, this sharp dividing line between a lower stratosphere with small eddy heat fluxes and an upper stratosphere with large eddy heat fluxes does not appear at all longitudes. Over Alaska one finds maximum eddy heat fluxes between 20 km and 22 km, and values in the lower stratosphere are much larger than those near 80° W.
Zusammenfassung Die Kovarianz zwischen Temperatur und meridionaler Windkomponente wurde für 18 Stationen der nördlichen Hemisphäre für 2km-Intervalle vom Boden bis 28 km berechnet. Diese Kovarianzen sind dem nach Norden gerichteten mittleren Strom der Wärme proportional, verursacht durch wandernde Wirbel. Für 80°W wurden Querschnitte der Kovarianz zwischen Temperatur und meridionaler Windkomponente konstruiert. In diesem Meridianschnitt tritt ein Minimum des turbulenten Wärmeflusses in nahezu 20 km Höhe in allen Breiten im Januar auf; in höheren Breiten beginnt eine plötzliche Zunahme mit der Höhe zwischen 18 und 22 km. Dieser turbulente Wärmefluß ist im allgemeinen in der unteren Stratosphäre unterhalb 20 km ziemlich klein. Ein ähnliches Verhalten wird bei der französischen Station Chateauroux gefunden. Die Schicht, welche die Regionen des kleinen und des großen turbulenten Wärmeflusses trennt, scheint mit einer vonFaust besprochenen Nullschicht zusammenzufallen. Diese scharfe Trennungslinie zwischen unterer Stratosphäre mit kleinem turbulenten Wärmefluß und der oberen Stratosphäre mit größeren Wirbelköpern der Wärme tritt jedoch nicht an allen Längengraden auf. Über Alaska findet man einen maximalen turbulenten Wärmestrom zwischen 20 und 22 km; auch die Werte in der unteren Stratosphäre sind dort viel größer als diejenigen um 80°W.

Résumé On a calculé la covariance existant entre la température et la composante méridionale du vent. Ces calculs, ont été effectués pour des intervalles de 2 km du sol à 28 km et cela pour 18 stations, de l'hémisphère nord. Ces nord et provoqués par des tourbillons mobiles. On a construit des sections de la covariance entre température et composante méridionale du vent à 80° de longitude W. Sous cette longitude, on constate en janvier un minimum du flux turbulent de chaleur à environ 20 km d'altitude et cela sous toutes les latitudes. Dans les latitudes élevées, on constate en outre une brusque augmentation de ce flux avec l'altitude et cela entre 18 et 22 km. Ce flux turbulent de chaleur est en général assez faible dans les basses couches de la stratosphère, c'est à dire au-dessous de 20 km. On trouve des conditions similaires, à la station française de Chateauroux. La couche qui sépare les régions présentant des flux turbulents de chaleur faible et important semble coïncider avec la couche nulle deFaust. Cette nette ligne de séparation entre la stratosphère inférieure présentant un faible flux turbulent de chaleur et la stratosphère supérieure comportant des corps tourbillonnaires de chaleur importants ne se rencontre cependant pas sous toutes les longitudes. Au-dessus de l'Alaska, on rencontre un courant turbulent de chaleur maximum entre 20 et 22 km. Les valeurs de la stratosphère inférieure y sont aussi beaucoup plus grandes que celles trouvées à 80° de longitude ouest.


With 4 Figures  相似文献   

10.
Summary The paper summarises some of the interesting results regarding the climate of the air layers near the ground at Poona (India), under subtropical conditions. The shimmering phenomenon, the thickness of the shimmering layer as estimated from the decay of short period temperature fluctuations with height, the diurnal variation of temperature in the soil and in the air layers near the ground surface, and the growth and decay of the inversion layer in relation to the shimmering layer are discussed. An instrument for recording the heat loss by convection from the insolated ground and the phenomenon of the invisible condensation of water vapour in the soil surface compensating the loss by evaporation during a part of the day are next referred to. The correlation between the vertical gradient of temperature and of wind velocity is found to be quite significant.Considerable progress has also been made in investigating the microclimates of plant communities like crops. Each crop shows a typical microclimate. The canopy effect in sugarcane resulting in a forced inversion of temperature during day time is of particular interest. Variations of wind velocity and evaporation both with height above ground and from crop to crop are also discussed.
Zusammenfassung Es wird ein Überblick über einige interessante Resultate über das Klima der bodennahen Luftschicht in Poona (Indien) in subtropischen Verhältnissen gegeben. Der Szintillationseffekt, die Dicke der Schlieren bildenden Schicht, die sich aus der Abnahme der kurzperiodischen Temperaturschwankungen mit der Höhe abschätzen läßt, die Tagesschwankung der Temperatur im Boden und in den bodennahen Luftschichten sowie die Zu- und Abnahme der Inversionsschicht im Vergleich mit der Szintillationsschicht werden diskutiert. Sodann wird ein Instrument zur Registrierung des Wärmeverlusts durch Konvektion vom besonnten Boden beschrieben und die Erscheinung der unsichtbaren Wasserdampfkondensation an der Bodenoberfläche besprochen, durch die der Wärmeverlust durch Verdunstung während eines Teils des Tages kompensiert wird. Die Korrelation zwischen vertikalem Temperaturgradienten und Windgeschwindigkeit erweist sich als ziemlich signifikant.Bedeutende Fortschritte konnten auch bei der Erforschung der Mikroklimate von Pflanzengesellschaften, wie Getreide, erzielt werden; jede Getreideart zeigt ein typisches Mikroklima. Der Oberflächeneffekt bei Zuckerrohr, der zu einer erzwungenen Temperaturinversion während des Tages führt, bietet besonderes Interesse. Auch Schwankungen von Windgeschwindigkeit und Verdunstung mit der Höhe über dem Boden wie auch für Getreidearten werden diskutiert.

Résumé On expose quelques résultats intéressants concernant le microclimat des basses couches d'air à Poona (Inde) dans des conditions subtropicales. On discute l'effet de scintillation, l'épaisseur de la couche produisant des stries, épaisseur que l'on peut estimer grâce à la diminution avec la hauteur des variations de température à courte période, la variation diurne de la température dans le sol et dans la couche d'air voisine de celui-ci, et enfin l'accroissement et l'amincissement de la couche d'inversion comparée à la couche de scintillation. Puis on décrit un appareil enregistreur de la perte de chaleur par convection du sol exposé au soleil; on discute le phénomène de la condensation invisible de la vapeur d'eau dans la surface du sol grâce à la quelle la perte de chaleur par condensation est compensée pendant une partie du jour. La corrélation entre le gradient vertical de température et la vitesse du vent se révèle assez significative.On a pu également enregistrer d'importants progrès dans l'étude du microclimat d'associations végétales telles que les céréales; chaque espèce de céréale présente un microclimat typique. Un intérêt particulier s'attache à l'effet de surface chez la canne à sucre qui conduit à une inversion forcée de température pendant le jour. On discute encore les variations de la vitesse du vent et de l'évaporation selon la verticale au-dessus du sol et cela en rapport avec les espèces de céréales.


With 13 figures.  相似文献   

11.
Summary One method of computing the seasonal heat budget of the atmosphere involves the seasonal heat storage in the oceans. On the basis of bathythermograph data and ocean surface temperatures, the heat added to, or released by the ocean was computed month by month. The heat stored in the ocean was then compared withGabites' estimate of the heat added by radiation and by means of the latent heat of water vapor. From this comparison, the heating of the atmosphere was approximated. In middle latitudes, the net heating of the atmosphere is close to zero during most of the year, so that even the sign of the atmospheric heating is in doubt there. During most of the year, the atmosphere undergoes net heating in low latitudes, and net cooling in high latitudes. The excess is removed by motions of the atmosphere and the ocean.
Zusammenfassung Eine Methode, das jahreszeitliche Wärmebudget der Atmosphäre zu berechnen, hat auch der Wärmespericherung in den Ozeanen Rechnung zu tragen. Auf Grund von Wasserthermographenwerten und Ozeanoberflächentemperaturen wurden die dem Ozean zugeführten oder von ihm abgegebenen Wärmemengen monatsweise berechnet. Die im Ozean gespeicherte Wärme wurde dann mit der vonGabites aufgestellten Schätzung der durch Strahlung und durch die latente Wärme des Wasserdampfs zugeführten Wärmeenge verglichen und von dieser Vergleichung wurde auf die Erwärmung der Atmosphäre geschlossen. In mittleren Breiten liegt der Erwärmungszuwachs der Atmosphäre während des Großteils des Jahres bei Null, so daß sogar das Vorzeichen der Erwärmung zweifelhaft ist. Während des Großteils des Jahres erfährt die Atmosphäre dagegen in niederen Breiten einen Wärmezuwachs, in hohen Breiten einen Überschuß an Abkühlung. Diese Überschüsse werden durch Bewegungsvorgänge in der Atmosphäre und im Ozean verfrachtet.

Résumé Une méthode visant à calcular le bilan thermique annuel de l'atmosphère doit tenir compte de la chaleur mise en réserve dans les mers. Des mesures de température de l'eau de mer en profondeur et en surface permettent d'établir les quantités de chaleur fournies mensuellement à la mer ou enlevée à celle-ci. La chaleur accumulée fut alors comparée à celle qu'estimeGabites en considérant la chaleur fournie par rayonnement et par la chaleur latente de la vapeur d'eau; on en a tiré une conclusion relative au réchauffement de l'atmosphère. Aux latitudes moyennes, l'accroissement de chaleur de cette dernière est voisine de zéro la plus grande partie de l'année, de sorte que même le signe est douteux. Aux latitudes basses par contre l'atmosphère reçoit de la chaleur pendant la plus grande partie de l'année; elle en perd aux latitudes élevées. Ces gains et ces pertes s'équilibrent in globo par les mouvements de l'air et de l'eau.


With 4 Figures

Presented at the 11th General Assembly, IUGG (IAM), Toronto, Septemer 1957.

Dedicated to Dr.Anders K. Ångström on the occasion of his 70th birthday.  相似文献   

12.
Summary Several aspects of the formulation and physical meaning of heat flux by convection are discussed. Convective heat flux, is uniquely determined only when the flux of each constituent substance vanishes. For uniform composition, the physically satisfactory formulation of eddy flux of heat is in terms of the velocity fluctuation about the weighted mean introduced byHesselberg but in some important problems this formulation is practically the same asSwinbank's. It is suggested that convective heat flux be interpreted to include the flux of not only enthalpy but also potential energy.
Zusammenfassung Es werden mehrere Möglichkeiten der Formulierung und der physikalischen Interpretation des Wärmeflusses durch Konvektion diskutiert. Der konvektive Wärmefluß ist nur dann eindeutig bestimmt, wenn der Fluß der einzelnen Komponenten verschwindet. Eine physikalisch befriedigende Formulierung der Wärmescheinleitung im Falle eines homogenen Mediums läßt sich mittels Geschwindigkeitsschwankungen um die ausgeglichene Bewegung gewinnen, wie sie vonHesselberg eingeführt wurden; doch ist diese Formulierung bei einigen wichtigen Problemen praktisch identisch mit der vonSwinbank. Es wird vorgeschlagen, unter konvektivem Wärmefluß nicht nur den Fluß von Enthalpie, sondern auch den von potentieller Energie zu verstehen.

Résumé Cet exposé discute les divers aspects du sens physique du flux calorifique dû à la convection. Le flux convectif de chaleur n'est déterminé absolument que lorsque de flux le chaque constituant est égal à zéro. Pour une composition uniforme, la formule physiquement satisfaisante du flux calorifique dû à la turbulence est en fonction de la fluctuation de la vitesse par rapport à la moyenne pondérée introduite parHesselberg. Dans certains problèmes importants, cette formule est cependant pratiquement la même que celle deSwinbank. L'auteur propose d'interpréter le flux de chaleur convectif de manière à y inclure non seulement le flux d'enthalpie, mais aussi le flux d'énergie potentielle.


This research was sponsored by the Office of Naval Research, U. S. Department of the Navy, under contract with Brown University.Contribution No. 701 from the Woods Hole, Oceanographic Institution.  相似文献   

13.
Zusammenfassung Unter Verwendung der physikalischen Gesetze für Strahlung und Wärmeleitung wird versucht, kurzfristige Änderungen der menschlichen Hauttemperatur unter dem Einfluß einer durchdringenden Strahlung von bekanntem Absorptionskoeffizienten zu berechnen. Es gelingt, eine passende Lösung der betreffenden Differentialgleichung abzuleiten. In Ergänzung zu einer früheren diesbezüglichen Untersuchung wird in der gegen-wärtigen Arbeit das Ansteigen des Wärmeverlustes der Hautoberfläche durch Ausstrahlung und Verdunstung mit wachsender Hauttemperatur berücksichtigt. Da die allgemeine Lösung für viele Fälle der praktischen Anwendung zu unhandlich ist, werden entsprechende Näherungsformeln abgeleitet, wobei die Grenzen der Anwendbarkeit dieser Formeln diskutiert werden. Die theoretischen Ergebnisse zeigen eine weitgehende Übereinstimmung mit direkten Messungen vonH. M. Bolz. Weitgehende Anwendungsmöglich-keiten dürfte eine Näherungsformel (33) haben die gestattet, die Zeitspanne abzuschätzen, innerhalb der eine Haut bestimmter Anfangstemperatur praktisch die den Strahlungsverhältnissen der Umgebung entsprechende Gleich-gewichtstemperatur annimmt.
Summary Based upon the physical laws for radiation and heat transfer it is attempted to compute short range variations of human skin temperatures under the influence of incoming penetrating radiation with a given coefficient of absorption. A solution of the respective differential equation can be derived. In addition to a previous investigation on the same topic in the present study an increase of the net loss of heat from the skin surface by radiation and eva-poration with increasing skin temperature is allowed. Since the complete solution may be too complicated for practical applications in many cases approximative formulae are deduced and the limitation of their use discussed. A good agreement can be shown between the theoretical results and measurements byH. M. Bolz. A special application of the approximative formula (33) is to precalculate the time interval within which the skin-temperature will be practically raised from a given initial value to the temperature of radiative equilibrium.

Résumé En appliquant les lois du rayonnement et de la conductibilité calorifique, on tente de calculer les variations rapides de la température de la peau humaine sous l'effet d'un rayonnement pénétrant de coefficient d'absorption connu, et l'on arrive à établir une solution convenable de l'équation differentielle en question. En complément d'une étude antérieure, on considère ici l'accroissment de la perte de chaleur à la surface de la peau par émission et évaporation en fonction de la température de l'épiderme. Comme la solution générale est d'une application malaisée, on donne des formules approchées ainsi que les limites de leur emploi. Les résultats théoriques s'accordent fort bien avec les mesures directes deH. M. Bolz. La formule approchée (33) en particulier permet d'estimer le délai dans un épiderme de température initiale connue atteint sa température d'équilibre sous l'effet du rayonnement; elle doit avoir de nombreuses applications.


Mit 2 Textabbildungen.  相似文献   

14.
Summary Temperature bears an importance to man far beyond the mere matter of his hour-to-hour comfort. In some places it lays a heavy, stagnating hand over his life and holds him to a vegetative existence; in others, it generates an energy and progressiveness which drives him forward with irresistible impetus. Its effects begin even before he is conceived, for the metabolic vigor of parental germ cells at the time of their union exerts a potent influence over the entire course of the new life. Without favorable temperatures, neither individual nor nation can develop innate potentialities to the full.The human body is essentially a combustion machine that functions only as its cells release energy by burning the foodstuffs taken in. For every unit of combustion energy transformed into work-output by our bodies, three or four similar units must be dissipated as waste heat. Failure of such dissipation to keep pace with heat production in the body may mean heat stroke and death within a few hours. The waste heat of combustion thus becomes one of the body's most important excretory products.Following several weeks of difficulty in dissipation waste heat, physical and mental activity declines, and there is a drop in the combustion rate. A lowered total combustion rate means less energy for thought and action, as well as less waste heat to be dissipated. Physical and mental characteristics thus change, from the dynamic and pushing, to a more passive type; personal initiative gives way to a desire for security.That these are basic changes in the individual's metabolic make-up is evidenced by equally profound alterations in such body functions as growth, rate of development, resistance to infection, and thought capacity. When difficult heat loss induces a lowered combustion rate in the cells, growth slows down and may be completely halted, even though an ample food supply be available; onset of puberty and maturity is progressively delayed and ability to reproduce is reduced or completely obliterated, although matings go on freely; resistance to bacterial invasion is impaired, especially for those respiratory infections in which the white blood cells (phagocytes) provide the first and main line of the body's defense-system; and, finally, ability to solve problems is greatly impaired.Proper ease of body heat-loss means just the opposite—a fast growing, early maturing, highly fertile individual, with a keen mentality and good ability to fight infectious disease. These statements are by no means hypothetical but are based upon well authenticated statistical findings on man and on experimental animals under controlled conditions. They show up in the laboratory, under natural climatic differences, and during the wide seasonal swings in middle temperature latitudes.Climatic temperature differences, whether brought about by latitude or altitude, are potent factors in human life, and so also are the wide seasonal temperature swings of the earth's middle latitudes. The fortunate nations of the earth are those located where the body's waste heat can be lost readily.Man is in reality a pawn of the environmental forces encompassing him, being pushed forward to a vantage point at one time or held in lethargic bondage at another. Here is a challenge of the first magnitude—can human intelligence find an effective answer? If not an answer, then it should at least comprehend the forces at work and the major significance of their effects.
Zusammenfassung Die Temperatur besitzt eine Bedeutung für den Menschen, die weit über die Alltagsbedürfnisse des Wohlbefindens hinausgeht. In einzelnen Gebieten legt sie eine schwere, lähmende Hand auf das menschliche Leben und beschränkt es auf eine vegetative Existenz; in anderen dagegen erzeugt sie Energie und Arbeitsdrang. Ihre Auswirkung setzt schon vor der Konzeption ein, indem die Stoffwechselenergien der elterlichen Keimzellen im Augenblick ihrer Vereinigung einen mächtigen Einfluß auf den ganzen Verlauf des neuen Lebens ausüben. Ohne günstige Temperaturen kann weder das Individuum noch die Nation die angeborenen Fähigkeiten in vollem Umfang entwickeln.Der menschliche Körper stellt im Prinzip eineWärmemaschine dar, die nur soweit funktioniert, als ihre Zellen Energie durch Verbrennung der Nahrungsmittel freimachen. Für jede Einheit der Verbrennungsenergie, die durch unseren Körper in Arbeitsleistung verwandelt wird, müssen drei bis vier gleiche Einheiten als Wärmeverluste aufgebracht werden. Wenn diese Wärmeabgabe mit der Wärmeproduktion im Körper nicht im Gleichgewicht ist, kann dies innerhalb weniger Stunden zu Hitzschlag und zum Tode führen. Die Abgabe der Verbrennungswärme wird dadurch zu einem der wichtigsten Ausscheidungsprodukte des Körpers.Dauert die Erschwerung der Wärmeabgabe mehrere Wochen an, so geht die körperliche und geistige Aktivität zurück, wodurch auch die Verbrennungs-wärme abnimmt. Eine Reduktion der Gesamtverbrennungswärme bedeutet eine Verminderung der für Denken und Handeln disponibeln Energie wie auch eine Verkleinerung der Wärmeverluste. Physisches und psychisches Benehmen ändert sich von einem dynamischen zu einem mehr passiven Verhalten und die persönliche Initiative macht dem Sicherheitsbedürfnis Platz.Daß es sich dabei um grundlegende Veränderungen der individuellen Stoffwechselvorgänge handelt, geht aus den gleichermaßen tiefgreifenden Veränderungen verschiedener Körperfunktionen, wie Wachstum, Entwicklungsstand, Resistenz gegen Infektionen und Denkvermögen hervor. Wenn eine Erschwerung der Wärmeabgabe zu einer Reduktion der Verbrennungswärme in den Zellen führt, wird auch bei reichlicher Ernährung das Wachstum verlangsamt oder ganz unterbunden; der Beginn von Pubertät und Geschlechtsreife wird allmählich verzögert und die Fortpflanzungsfähigkeit wird trotz ungestörter Paarung vermindert oder gänzlich aufgehoben. Die Resistenz gegenüber Bakterien ist besonders für solche Infektionen der Atmungsorgane vermindert, bei denen die weißen Blutkörperchen (Phagozyten) die vorderste und wichtigste Abwehrlinie des Körpers bilden; und schließlich ist auch die Fähigkeit, geistige Probleme zu lösen, stark reduziert.Demgegenüber bedeutet Leichtigkeit der Wärmeabgabe des Körpers gerade das Gegenteil: schnelles Wachstum, frühe Reife, hohe Fruchtbarkeit, geistige Lebhaftigkeit und gute Abwehr gegen Infektionskrankheiten. Diese Feststellungen sind keineswegs etwa hypothetisch, sondern basieren auf statistischen Untersuchungen am Menschen oder an Versuchstieren unter genau kontrollierten Bedingungen; sie beruhen auf Laboratoriumsuntersuchungen unter normalen klimatischen Differenzen, aber auch auf den weiten Jahreszeitenschwankungen gemäßigter Breiten.Klimatische Temperaturdifferenzen, die durch Höhe oder geographische Breite hervorgerufen sind, bedeuten mächtige Faktoren im menschlichen Leben, und dasselbe gilt von den großen jahreszeitlichen Temperaturschwankungen der mittleren Breiten der Erde. Die begünstigten Völker der Erde wohnen in den Lagen, wo der Wärmeüberschuß des Körpers leicht abgegeben werden kann. Der Mensch ist in Wirklichkeit das Ergebnis seiner Umgebungskräfte; an einem Ort wird er dadurch vorwärts getrieben, am anderen in Gleichgültigkeit gehalten. Es erhebt sich hier die Frage, ob die menschliche Intelligenz einen wirksamen Ausweg aus diesem Dilemma findet oder ob es wenigstens gelingt, die hier wirksamen Kräfte und die Bedeutung ihrer Wirkungen zu verstehen.

Résumé La température a pour l'homme une importance qui dépasse largement ses besoins journaliers de bien-être. Dans certaines régions elle exerce une action paralysante sur la vie humaine en la réduisant à une existence végétative; dans d'autres au contraire elle suscite l'énergie et le goût au travail. Son action commence déjà avant la conception puisque l'énergie métabolique des cellules germinales des parents au moment de leur réunion exerce une grande influence sur toute l'évolution de la vie de l'être nouveau. Faute de vivre dans des conditions favorables de température, les individus pas plus que les nations ne peuvent développer complètement leurs aptitudes naturelles.L'organisme humain représente en principe une machine thermique qui ne peut fonctionner que dans la mesure où ses cellules libèrent de l'énergie par combustion des aliments. Pour chaque unité d'énergie de combustion transformée par notre corps en travail, trois ou quatre unités égales disparaissent sous forme de perte calorique. Si cette perte et la production de chaleur du corps ne sont pas en équilibre, cet état peut conduire en quelques heures au coup de chaleur et à la mort. La mise en liberté de la chaleur de combustion est de ce fait un des plus importants phénomènes de sécrétion de l'organisme.Lorsque les conditions extérieures gênent le refroidissement normal pendant des semaines, l'activité corporelle et mentale recule et par suite la chaleur de combustion diminue, ce qui a pour effet de réduire l'énergie disponible pour la pensée et l'action ainsi que les pertes de chaleur. L'attitude physique et psychique d'active devient passive et l'initiative personnelle fait place au besoin de sécurité.Le fait que différentes fonctions physiologiques telles que la croissance, la maturité, la résistance aux infections et la capacité de penser subissent de profondes modifications prouve qu'il s'agit de changements fondamentaux du metabolisme individuel. Lorsque la perte insuffisante de chaleur provoque une réduction de la chaleur de combustion dans les cellules de l'organisme, la croissance s'en trouve ralentie même si l'alimentation est abondante; le début de la puberté et de la maturité sexuelle est peu à peu retardé et la capacité de reproduction se trouve diminuée ou même complètement annihilée malgré l'appariement normal. La résistance à l'infection bactérienne diminue, surtout dans les cas d'infection des voies respiratoires pour lesquels les phagocytes forment la plus importante ligne de défense. Enfin la capacité de résoudre des problèmes d'ordre intellectuel est fortement réduite.Par contre la facilité pour le corps humain de perdre facilement sa chaleur a un effet contraire: croissance rapide, maturité précoce, fécondité élevée, vivacité intellectuelle et bonne défense contre les maladies infectieuses. Ces considérations ne sont pas du tout hypothétiques, mais se fondent sur des recherches statistiques portant sur l'homme ou sur des animaux placés dans des conditions parfaitement contrôlées; elles reposent sur des recherches faites en laboratoire reproduisant les différences climatiques normales ou en observant l'effet des grandes variations saisonnières des latitudes moyennes.Les différences climatiques de température résultant des écarts d'altitude ou de latitude sont donc des facteurs agissant puissamment sur la vie humaine; il en est de même des grandes variations thermiques saisonnières des latitudes moyennes. Les peuples privilégiés de la terre habitent les régions où l'organisme perd facilement son excès de chaleur. L'homme est en réalité la résultante des forces de son milieu; à un endroit celles-ci stimulent son énergie, tandis qu'à un autre elles le maintiennent dans l'apathie. On peut se demander si l'intelligence humaine trouve une issue à ce dilemme ou si elle réussit au moins à comprendre les forces agissantes et la signification de leurs effets.
  相似文献   

15.
Zusammenfassung Die Temperature einer Betondecke wurde mit einer widerstandselektrischen Registrieranlage während eines Jahres unter natürlichen Bedingungen an der Betonoberfläche und in zwei verschiedenen Tiefen (1 cm und 15 cm) gemessen. Auf Grund dieser Beobachtungen wird der charakteristische Jahresablauf der Oberflächentemperatur eingehend diskutiert. Weiter wurde der Einfluß der Einzelkomponenten des Wärmeumsatzes auf das Zustandekommen der Temperaturverhältnisse untersucht. Die Wirkung des Strahlungsumsatzes zeigte sich dabei so dominierend, daß sich eine Möglichkeit ergab, bereits aus den Werten der kurzwelligen Einstrahlung und der Lufttemperatur die zu erwartenden extremen und mittleren Oberflächentemperaturen für einzelne Tage abzuleiten. Die Advektion von Luft aus der größtenteils rasenbedeckten Umgebung bewirkte, daß in den Monaten April bis Oktober ganztägig Wärmeabgabe von der Betonoberfläche an die stets kältere Luft stattfand. Der Wärmeumsatz mit dem Inneren konnte aus den Registrierungen in 0 und 1 cm Tiefe erfaßt werden. Abschließend wird für ausgewählte Perioden der Gesamtwärmeumsatz angegeben.
Summary The temperature of a disk-shaped piece of concrete exposed to natural weather conditions was recorded during one year by means of resistance thermometers placed at the surface and in depths of 1 and 15 cm. The annual variation of surface temperature is discussed, and the various components of the heat balance which cause temperature changes investigated. By far the greatest effect is due to net radiation. It is found that daily maximum and mean values of surface temperature can be calculated from the knowledge of global radiation and air temperature alone. Between April and October, the advection of air from the surrounding grass covered surface resulted in a loss of heat from the concrete surface during all times of the day. Heat flux between the surface and the interior of the concrete was computed from the recordings at 0 and 1 cm depth. The total heat exchange is given for several selected periods.

Résumé Pendant une année, on a mesuré à la surface et à deux niveaux différents la température d'une dalle de béton placée dans des conditions naturelles; ces mesures furent faites au moyen d'un enregistreur de résistances électriques. Sur la base de ces mesures, l'auteur discute l'évolution annuelle de la température superficielle de la dalle. Il examine en outre l'influence de chacune des composantes du bilan thermique sur cette évolution. La part qu'y prend l'échange de la radiation domine à tel point qu'il est possible de calculer à l'avance les températures extrêmes et moyennes journalières de la surface de la dalle en partant d'une part du rayonnement global reçu et d'autre part de la température de l'air. Les environs de la dite dalle étant en majeure partie recouverts de gazon, on constate d'avril à octobre un flux permanent de chaleur de la surface de la dalle vers l'air ambiant, ce dernier étant constamment plus frais. L'échange de chaleur entre la surface et l'intérieur de la dalle a pu être déterminé au moyen des enregistrements à 0 et 1 cm. Enfin, l'auteur discute l'échange thermique général calculé pour certaines périodes réparties sur toute l'année.


Mit 10 Textabbildungen  相似文献   

16.
Summary The available aerological material now permits a more accurate estimate than before of the various terms in the heat budget. It is difficult to find an area for which all energy budget terms have been evaluated. The research at McGill University has attempted to fill this need for the Polar Ocean. In such discussions the heat fluxes at two levels must be known: in the present investigation, 300 mb and earth's surface were chosen. The heat budget calculations were carried out for several areas of the Polar Ocean. Independent calculations of all terms having been made, it was possible to check the accuracy. Both for the Polar Ocean and the Norwegian-Barents Sea a satisfactory balance was obtained.The surface energy budget shows that the radiative terms are far greater than all other influences, and the long-wave components are the greatest in all areas and months. The sensible heat flux from atmosphere to ground is negligible. In winter, all energy expenditure is radiative from the Polar Ocean, but 20% is non-radiative over the Norwegian-Barents Sea. There, the readily available energy from the ocean compensates for the progressively smaller input by radiation through the winter, and the energy budget remains extraordinarily stable during the winter. Looking at the tropospheric energy budget over the Arctic, there is a sharp increase in importance of non-radiative terms on the income side, and an even more pronounced decrease on the expenditure side.Calculations for the earth-atmosphere energy budget show that the result of no advection into the North Polar regions would be a temperature drop of 35° C over the Norwegian-Barents Sea and about 50° over the Central Polar Ocean. The various energy currents are represented pictorially, setting the total incoming energy at the top of the atmosphere equal to 100 units. All discussions refer to the average conditions over the Arctic Ocean. It would be most valuable to know which changes in the individual terms are possible and can be realised under the existing conditions of the world in which we live. The data available from the present investigation will be used for such a study of climatic change.
Zusammenfassung Das verfügbare aerologische Beobachtungsmaterial gestattet heute eine genauere Schätzung der verschiedenen Terme des Wärmehaushalts als früher. Doch ist es schwierig, ein Gebiet zu finden, für das sämtliche Glieder des Energiebudgets bestimmt wurden. Die Untersuchungen der McGill-Universität versuchen, diese Lücke für das Polarmeer auszufüllen. Für solche Untersuchungen müssen die Wärmeströme in zwei verschiedenen Niveaus bekannt sein, und für die vorliegende Untersuchung wurden das 300-mb-Niveau und die Erdoberfläche gewählt. Die Berechnungen des Wärmehaushalts wurden für verschiedene Gebiete des Nördlichen Eismeers durchgeführt. Da unabhängige Berechnungen der einzelnen Glieder durchgeführt wurden, ist es möglich, die Genauigkeit abzuschätzen, und es zeigt sich, daß sowohl für das Eismeer wie für die Norwegen-Barents-See eine befriedigende Bilanz resultiert.Aus der Energiebilanz am Boden ergibt sich, daß die Strahlungsglieder bei weitem größer sind als alle übrigen Einflüsse und daß die langwelligen Komponenten in allen Gebieten und Monaten am größten sind. Der fühlbare Wärmestrom von der Atmosphäre zur Erde kann vernachlässigt werden. Im Winter beruht der gesamte Energieverlust vom Eismeer auf Strahlungsvorgängen, über der Norwegen-Barents-See dagegen nur zu 80%. Hier kompensiert die leichte Wärmeabgabe vom Ozean die progressive Abnahme des Strahlungsgenusses durch den Winter, so daß die Energiebilanz während des Winters außerordentlich gleichmäßig bleibt. Hinsichtlich der Energiebilanz der Troposphäre über der Arktis besteht ein starker Energiegewinn durch die strahlungsfreien Glieder und gleichzeitig eine ausgesprochene Abnahme der Wärmeverluste.Berechnungen des Wärmehaushalts zwischen Erde und Atmosphäre zeigen, daß das Fehlen von Advektion zum Nordpolargebiet zu einem Temperaturabfall von 35° C über der Norwegen-Barents-See und von 50° über dem zentralen Eismeer führen müßte. Die verschiedenen Energieströmungen werden bildlich dargestellt, wobei die gesamte am äußeren Rande der Atmosphäre eintretende Energie 100 Einheiten gleichgesetzt wird. Alle Diskussionen beziehen sich auf durchschnittliche Verhältnisse über dem Eismeer. Es wäre von großem Interesse zu untersuchen, welche Veränderungen der einzelnen Glieder unter den auf der Erde herrschenden Bedingungen möglich und realisierbar sind. Die Resultate der vorliegenden Untersuchung werden für eine derartige Studie über Klimaveränderungen benützt werden.

Résumé Les observations aérologiques disponibles actuellement permettent une estimation plus précise que jusqu'ici des différents paramètres de calcul du bilan thermique. Il est cependant difficile de trouver une surface d'une certaine dimension pour laquelle tous les termes du bilan énergétique ont été évalués. Les recherches entreprises à l'Université McGill tentent de combler cette lacune pour l'Océan Glacial Arctique. Pour ce faire, il faut connaître les flux de chaleur à deux niveaux; dans la présente étude, on a choisi la surface standard de 300 mb et le sol. Les calculs du bilan thermique ont été effectués pour plusieurs parties de l'Océan Glacial Arctique. Vu que chaque terme de l'équation fut calculé indépendemment des autres, il fut possible d'en contrôler la précision. On a ainsi obtenu un bilan satisfaisant tant pour l'Océan Glacial tout entier que pour la partie située entre les Mers de Norvège et de Barentz.Le bilan énergétique à la surface du sol montre que les paramètres de radiation sont beaucoup plus importants que tous les autres et que leurs composantes se rapportant aux longues ondes sont les plus grandes dans toutes les régions étudiées ainsi qu'au cours de tous les mois de l'année. Le flux de chaleur perceptible de l'atmosphère vers le sol est négligeable. En hiver, toute la dépense d'énergie provient du rayonnement sur l'Océan Glacial Arctique, mais, sur les Mers de Norvège et de Barentz, 20% de ces pertes d'énergie ne proviennent pas du rayonnement. Dans ce second cas, l'énergie venant de la mer et immédiatement disponible compense durant tout l'hiver la diminution progressive du rayonnement reçu, si bien que le bilan énergétique y est extraordinairement stable durant toute cette saison. Quant au bilan énergétique de la troposphère au-dessus de l'Arctique, on constate une forte augmentation de l'importance des termes étrangers au rayonnement du côté des gains en énergie et une décroissante tout aussi importante de ceux-ci du côté des pertes.Des calculs concernant l'échange énergétique entre l'atmosphère et la terre montrent que le résultat de l'absence d'advection vers les régions polaires arctiques serait une chute de température de 35° C sur les Mers de Norvège et de Barentz et de près de 50° C sur le centre de l'Océan Glacial Arctique. Les différents courants d'énergie ainsi calculés sont reportés sur des figures en pour-cent de l'énergie totale reçue au sommet de l'atmosphère. Toutes les dicussions se rapportent à des conditions moyennes régnant sur l'Océan Glacial Arctique dans son ensemble. Il serait cependant très intéressant de connaître quelles sont, pour les différents termes du bilan thermique, les variations possibles et pouvant se réaliser dans les conditions existant dans le monde où nous vivons. Les chiffres résultants de la présente recherche seront utilisés dans une étude consacrée aux modification du climat.


With 5 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)-7415.  相似文献   

17.
Zusammenfassung Eine für die Praxis bedeutungsvolle Methode der Vorhersage der Tageshöchsttemperatur beruht auf der Kenntnis der zwischen dem Radiosondenaufstieg am Morgen und dem Zeitpunkt der Erreichung der Maximumtemperatur am frühen Nachmittag an die unteren Luftschichten abgegebenen Wärmemenge. Für heitere und windschwache Tage wurde an Hand des Beobachtungsmaterials der Jahre 1949–1951 für Wien dieser Energiebetrag sowohl durch direkte Planimetrierung der Fläche zwischen zwei Tautochronen im Temperatur-Druck-Diagramm als auch durch Wärmebilanzbetrachtungen bestimmt und Monats- bzw. Zehntagemittel abgeleitet. Dabei stellte sich folgendes wichtige Ergebnis heraus: Während der Zeit des Erwärmungsprozesses, d. h. vom Minimum bis zum Maximum der Temperatur, wird unabhängig von der Größe der Einstrahlung im Mittel fast genau die eine Hälfte der aufgenommenen (absorbierten) Globalstrahlung zur Erwärmung des Bodens und zur Abstrahlung im Langwelligen (effektive Ausstrahlung), die andere Hälfte zur Erwärmung der unteren Luftschichten und zur Verdunstung verwendet. Eine Überprüfung der Genauigkeit der Vorhersage der Maximumtemperatur mit der hier geschilderten Methode ergab in insgesamt 80 Fällen einen mittleren Fehler von nur 1,2°C.
Summary A practical method of maximum temperature forecasting makes use of the fact, that it is possible to predict the daily maximum temperature provided the energy available for heating the lowest layers of the atmosphere is known for the period from the morning radiosonde ascent until the time of maximum temperature. Using observations on clear and calm days in Vienna for the years 1949–1951 this amount of energy has been determined both by planimetry of the respective area in the temperature-pressure diagram and by calculating the heat balance at the earth's surface; thus monthly and ten days means were derived. As an important result of these investigations the following rule was obtained: During the period of the heating process, i. e. from minimum to maximum temperature, almost exactly one half of the amount of incoming radiation absorbed at the earth's surface is used for heating the ground layers and for long-wave back radiation (effective outgoing radiation), the other half for heating the atmospheric layers near the ground and for evaporation. Testing the accuracy of this forecasting method for a total of 80 cases the mean error was found to be only 1.2,C.

Résumé Une méthode pratique de prévision du maximum diurne de température se fonde sur la connaissance de la quantité de chaleur fournie aux couches basses de l'atmosphère entre le sondage aérologique du matin et l'heure du maximum de température du début de l'après-midi. Cette quantité d'énergie a été déterminée pour des jours clairs et calmes à partir des observations faites à Vienne en 1949–1951, par planimétrie des surfaces comprises entre tautochrones sur les diagrammes température-pression, mais aussi à l'aide du calcul du bilan de chaleur et des moyennes mensuelles ou décadaires. Le résultat peut se formuler comme suit: Pendant la durée du réchauffement, c'est à dire depuis le minimum jusqu'au maximum de température et quel que soit l'intensité du rayonnement, presque exactement une moitié du rayonnement global absorbé contribue en moyenne à réchauffer le sol qui émet à grande longueur d'onde et l'autre moitié est absorbée par les basses couches d'air et par l'évaporation. Un contrôle de l'exactitude de cette méthode de prévision du maximum de température a fourni dans 80 cas une erreur moyenne de 1,2°C seulement.


Mit 7 Textabbildungen  相似文献   

18.
Zusammenfassung Für den Energieumsatz am Erdboden werden Meßreihen verschiedener Autoren zusammengestellt, getrennt für den Energiegewinn durch kurzwellige Strahlung, den Energieverlust durch langwellige Strahlung und den Energieverbrauch in Richtung Erdboden, Luft und Verdunstung; betrachtet werden Tagessummen für die horizontale Fläche. Für die kurzwellige Strahlung werden die in den einzelnen geographischen Breiten theoretisch zu erwartenden sowie die gemessenen Tagessummen vergleichend betrachtet. Für die langwellige Strahlung werden einige in Hamburg gewonnene Meßergebnisse mitgeteilt. Für den Energieverbrauch zur Erwärmung des Erdbodens und der Luft sowie zur Verdunstung werden die in Quickborn gewonnenen Werte im Vergleich zu den Strahlungsergebnissen diskutiert.
Summary Series of measurements for the energy exchange at the surface are collected, separately for the energy gain by short-wave radiation, the energy loss by long-wave radiation and the energy consumption in the direction of ground, air and by evaporation; daily totals for a horizontal surface are considered. A comparison of the actually measured and the theoretically expected daily totals of short-wave radiation is made for the different geographical latitudes. For long-wave radiation some results of measurements obtained at Hamburg are referred to. For the energy consumption spent on the heating of the ground and the air and on evaporation the values obtained at the Quickborn observatory are discussed and compared with the results of the radiation measurements.

Résumé L'auteur a groupé différentes mesures du bilan énergétique au niveau du sol effectuées par plusieurs expérimentateurs; il a classé séparément les gains par rayonnement à courte longueur d'onde, les pertes par rayonnement à grande longueur d'onde ainsi que l'énergie absorbée par le sol, par l'air et par l'évaporation. Il considère les sommes journalières rapportées à une surface horizontale. Comparaison de ces sommes calculées et observées pour diverses latitudes en ce qui concerne le rayonnement court. Séries de mesures du rayonnement long faites à Hambourg. Discussion des quantités d'énergie nécessaires au réchauffement du sol et de l'air et à l'évaporation sur la base des valeurs obtenues à Quickborn.


Mit 11 Textabbildungen

Herrn Dr.Anders K. Ångström zu seinem 70. Geburtstag gewidmet.  相似文献   

19.
The major physical processes at and near the tropopause are evaluated; these processes are radiation, convection and turbulence, advection and vertical convergence. Calculations of instantaneous long wave radiative temperature change for observed and postulated moisture distributions show that radiation usually acts to smooth the temperature profile. Observations and the principle of continuity show that convection is infrequent and unimportant in establishing the tropopause. General principles and numerical integration of the heat conduction equation for special cases show that turbulence will act to smooth the temperature profile unless flux has a certain relationship to hydrostatic stability. Observations, calculations and the principle of continuity show that advection and vertical convergence cannot be universal mechanisms of tropopause formation.
Zusammenfassung Die grundlegenden physikalischen Prozesse an und in der Nähe der Tropopause werden bestimmt; diese Prozesse sind Strahlung, Konvektion und Turbulenz, Advektion und Vertikalakonvergenz. Berechnungen von momentanen Temperaturänderungen durch langwellige Strahlung für beobachtete und vorgegebene Feuchtigkeitsverteilungen lassen erkennen, daß die Strahlung gewöhnlich das Temperaturprofil auszugleichen sucht. Beobachtungen und das Kontinuitätsprinzip zeigen, daß Konvektion selten und für die Bildung der Tropopause unwichtig ist. Allgemeine Prinzipien und numerische Integration der Wärmeleitungsgleichung für spezielle Fälle zeigen, daß die Turbulenz das Temperaturprofil auszugleichen sucht, außer wenn der Wärmestrom in spezieller Beziehung zur hydrostatischen Stabilität steht. Beobachtungen, Berechnungen und das Kontinuitätsprinzip führen zu der Feststellung, daß Advektion und vertikale Konvergenz nicht als allgemeine Mechanismen für die Bildung der Tropopause angesehen werden können.

Résumé L'auteur évalue les processus physiques fondamentaux de la tropopause et à sa proximité; ces processus sont le rayonnement, la convection et la turbulence, l'advection et la convergence verticale. Le calcul de variations instantanées de la température dûes au rayonnement de grande longueur d'onde, par une distribution observée et supposée de l'humidité, montre qu'en général le rayonnement semble atténuer et égaliser le profil de la température. Les observations et le principe de continuité font admettre que la convection est rare et de peu d'importance pour la formation de la tropopause. Des principes généraux et une intégration numérique de l'équation de transmission de chaleur pour des can spéciaux montrent que la turbulence tend à égaliser le profil de température à moins que le flux de chaleur ne soit en relation spécifique avec la stabilité hydrostatique. Des observations, des calculs et le principe de continuité prouvent que l'advection et la convergence verticale ne peuvent être considérées comme étant des mécanismes généraux pour la formation de la tropopause.


With 4 Figures

The research reported here was supported in part by the Geophysical Research Directorate, A. F. Cambridge Research Center.  相似文献   

20.
Summary An evaluation of the combination approach of Penman [1] as modified by Kohler and Parmele [2] for estimating potential evaporation (PE) is made at Poona, India, vis-a-vis the evaporation from the Russian 20 m2 tank and associated meteorological data. The use of Penman's form of wind function and net radiation computed from solar radiation, air temperature, and pyrgeometric value of sky radiation at 20.30 hrs. Indian Standard Time is seen to be adequate for obtaining reliable values of potential evaporation. Further lines of work to evaluate the potential evaporation climate over India are indicated.
Abschätzung der potentiellen Verdunstung durch kombinierte Annäherung
Zusammenfassung Eine Abschätzung der potentiellen Verdunstung (PE) wurde unter Benützung der Formel von Penman [1] mit der Abänderung von Kohler und Parmele [2] in Poona (Indien) durchgeführt und mit der Verdunstung von einer russischen 20m2-Wanne und gleichzeitigen meteorologischen Bedingungen verglichen. Die Benützung der Penman-Formel der Windabhängigkeit und der Strahlungsbilanz, berechnet aus Globalstrahlung, langwelliger Himmelsstrahlung und Lufttemperatur um 20.30 Uhr (indischer Lokalzeit) erweist sich als geeignet zur Gewinnung zuverlässiger Werte der potentiellen Verdunstung. Auf weitere Gesichtspunkte zur Bestimmung des potentiellen Verdunstungsklimas über Indien wird hingewiesen.

L'estimation de l'évaporation potentielle par combinaison approchée
Résumé L'évaluation du rapprochement de combinaison de Penman [1] telle qúelle est modifée par Kohler et Parmele [2] pour evaluér l'évaporation potentielle (PE) a étè employée à Poona, l'Inde, en comparaison avec l'évaporation de la citerne russe de 20 m2 et des données météorologiques supplémentaires. L'emploi de la formule de Penman de l'effet du vent et de la radiation nette calculée de la radiation solaire, de la température de l'air et de la valeur pyrgéométrique de la radiation du ciel à 20 heures 30 (heure indienne) se trouve être suffisant pour obtenir les valeurs sûres de l'évaporation potentielle. De plus, des directives du travail pour évaluer l'évaporation potentielle au-dessus de l'Inde sont discutées.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号