首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西准噶尔地区晚古生代岩浆活动剧烈,地壳的垂向和侧向增生显著,地壳生长和演化存在多阶段性。本文重点通过Sr-Nd-Pb同位素填图研究,发现西准噶尔地区εNd(t)值为2.29~8.75,(87Sr/86Sr)i值为0.697 397~0.708 336,(206Pb/204Pb)i值为17.4975~19.0352,整体表现为高正εNd(t)、低(87Sr/86Sr)i和年轻的地壳模式年龄特征,源区以古生代新生地壳为主,地幔贡献值整体大于50%,深部地壳几乎不存在古老的结晶基底,可以与区域构造地质、地球物理资料作较好匹配。区域晚古生代主要经历3个时期的造山阶段,分别对应造山带演化的第一阶段(中晚石炭世,岛弧为代表的侧向生长为主)、第二阶段早期(晚石炭世—早二叠世,后碰撞阶段的垂向生长为主)和第二阶段晚期(早二叠世—早三叠世,壳幔混源背景下的垂向生长),区域造山作用结束于早三叠世。  相似文献   

2.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

3.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

4.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

5.
Ryuichi Shinjo  Yuzo Kato   《Lithos》2000,54(3-4):117-137
The magmatism at the axial zone of the middle Okinawa Trough, a young continental back-arc basin, comprises a bimodal basaltic–rhyolitic suite, accompanied by minor intermediate rocks. We report major and trace element and Sr–Nd isotopic data for the intermediate to silicic suites, to provide constraints on their petrogenesis. The rhyolites, recovered as lava and pumice, fall into three geochemical groups (type 1, 2, and 3 rhyolites). Type 1 rhyolites have 87Sr/86Sr (0.7040–0.7042) and 143Nd/144Nd (0.5128–0.5129) identical to those of associated basalts, and are characterized by highly fractionated REE patterns. Petrogenesis of type 1 rhyolites is explicable in terms of fractional crystallization of the associated basalt. In contrast, type 2 rhyolites and andesite have slightly higher 87Sr/86Sr (0.7044–0.7047) but similar 143Nd/144Nd (0.5128) compared to those of the basalts. The compositions of type 2 rhyolite and andesite can be explained by assimilation and fractional crystallization (AFC) processes of the basalt magma; quantitative analysis suggests assimilation/fractional crystallization (Ma/Mc) ratios of ≤0.05. Hybrid andesite generated by mixing of evolved basalt and type 1 rhyolite is also present. We emphasize that mechanical extension in this part of the Okinawa Trough involves gabbroic lower crust that resulted from fractionation of mantle-derived basaltic magmas. Type 3 rhyolite occurs only as pumice, which makes its derivation questionable. This rhyolite has major and trace element compositions and Sr–Nd isotopic ratios, which suggests that it may be derived from volcanic activity on the southern Ryukyu volcanic front, and arrived in the Okinawa Trough by drifting on the Kuroshio Current.  相似文献   

6.
Tanya Furman  David Graham 《Lithos》1999,48(1-4):237-262
This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably <1 km. The chemical and isotopic variations are mostly geographically controlled: lavas from Tshibinda volcano, which lies on a rift border fault on the northwestern margin of the province, have higher values of 87Sr/86Sr, (La/Sm)n, Ba/Nb, and Zr/Hf than the majority of Kivu (Bukavu) samples. The range of 87Sr/86Sr at Tshibinda (0.70511–0.70514) overlaps some compositions found in the neighboring Virunga province, while Bukavu group lavas include the lowest 87Sr/86Sr (0.70314) and highest Nd (+7.6) yet measured in western rift lavas. The Tshibinda compositions trend towards a convergence for Sr–Nd–Pb isotopic values among western rift lavas. Among Kivu lavas, variations in 143Nd/144Nd correlate with those for certain incompatible trace element ratios (e.g., Th/Nb, Zr/Hf, La/Nb, Ba/Rb), with Tshibinda samples defining one compositional extreme. There are covariations of isotopic and trace element ratios in mafic lavas of the East African Rift system that vary systematically with geographic location. The lavas represent a magmatic sampling of variations in the underlying continental lithospheric mantle, and it appears that a common lithospheric mantle (CLM) source is present beneath much of the East African Rift system. This source contains minor amphibole and phlogopite, probably due to widespread metasomatic events between 500 and 1000 Ma. Lava suites which do not show a strong component of the CLM source, and for which the chemical constraints also suggest the shallowest magma formation depths, are the Bukavu group lavas from Kivu and basanites from Huri Hills, Kenya. The inferred extent of lithospheric erosion therefore appears to be significant only beneath these two areas, which is generally consistent with lithospheric thickness variations estimated from gravity and seismic studies.  相似文献   

7.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

8.
The mid-Proterozoic Isortoq dike swarm in the Gardar Province, South Greenland, comprises a variety of alkaline rocks ranging from gabbroic to syenitic in composition. Major magmatic mineral phases are olivine, clinopyroxene, Fe–Ti oxides, amphibole, plagioclase and alkali feldspar. Quartz occurs in some samples as a late magmatic phase. Liquidus temperatures of olivine-bearing samples range between 1120 and 1145 °C and solidus temperatures are 850–930 °C. Calculated silica activities are highly variable between 0.53 and unity. Oxygen fugacities vary from −3 to +1 log units relative to the fayalite–magnetite–quartz buffer.

The rocks have MgO contents <6 wt.% with Mg# between 53 and 17. Primitive mantle-normalized trace element patterns show a relative enrichment of LIL elements with Ba peaks and Nb troughs. Clinopyroxenes show a general enrichment in REE relative to chondritic values with variable slightly positive to prominent negative Eu anomalies. Two of the dikes were dated with Sm–Nd three-point isochrons at 1190±44 and 1187±87 Ma, respectively. Initial 87Sr/86Sr ratios of mafic mineral separates range from 0.70289 to 0.70432 and initial Nd values vary from +0.3 to −10.7. Whole-rock initial 187Os/188Os ratios are highly variable including very radiogenic values of up to 7.967. δ18Ov-smow values of separated clinopyroxene and amphibole range from +5.2‰ to +6.2‰ and fall within the range of typical mantle-derived rocks, although mixing with a lower crustal component is permitted by the data. Using energy-constrained assimilation-fractional crystallization (EC-AFC) modeling equations, the Sr–Nd isotope data of the more radiogenic samples can successfully be modeled by addition of up to 10% lower crustal granulite-facies Archean gneisses as contaminants. The Os isotopic data also suggest the involvement of old radiogenic crust. In accordance with seismic data, we conclude that a wedge of Archean crust extends from West Greenland further to the south below the present erosion level.  相似文献   


9.
In situ zircon U–Pb ages and Hf isotopic compositions and whole rock geochemical and Sr–Nd–Pb isotopic data are presented for the Zijinshan alkaline intrusive complex from the Shanxi Province, western North China Craton. Salic rocks dominate the complex with the monzonite occurring in the outermost and pseudoleucite phonolitic breccia in the center. The intrusion took place 127 Ma ago with the earliest emplacement of monzonite and the termination of cryptoexplosive pseudoleucite phonolitic breccia. All rocks from this complex show LREE enrichment and HFSE depletion and exhibit enriched to depleted Sr–Nd isotopic features. The presence of inherited zircons and enriched Hf isotopic compositions in zircon rims, along with the enriched whole rock Sr–Nd isotopic compositions, indicate that the monzonite was formed through the mixing of lithospheric mantle-derived magma with lower crust-derived melts. The diopside syenite and nepheline-bearing diopside syenite are more depleted than the monzonite in terms of the Sr and Nd isotopes, together with their very high concentrations of LILE, we proposed that they originated from a mixed mantle source of enriched lithospheric mantle and depleted asthenosphere. The nepheline syenite has very low concentrations of MgO, Ni, Cr, suggesting that the magma underwent significant crystal fractionation. The most depleted Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7036–0.7042, εNd(t) = − 0.2–0.3) among all rock types indicate a great contribution of asthenosphere to the nepheline syenite. The Zijinshan complex and its related crust-mantle interaction occurred in an extensional environment which resulted in continuously asthenospheric upwelling. Such an extensional environment might have been developed during the post-orogenic stage of the Late Paleozoic amalgamation of North China Craton with Mongolian continents and subsequent Mongol–Okhotsk ocean closure.  相似文献   

10.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

11.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

12.
The Atesina Volcanic District, the Monte Luco volcanics, and the Cima d'Asta, Bressanone-Chiusa, Ivigna, Monte Croce and Monte Sabion intrusions, in the central-eastern Southern Alps, form a wide calc-alkaline association of Permian age (ca. 280–260 Ma). The magmatism originated during a period of post-orogenic extensional/transtensional faulting which controlled the magma ascent and emplacement. The magmatic products are represented by a continuum spectrum of rock types ranging from basaltic andesites to rhyolites, and from gabbros to monzogranites, with preponderance of the acidic terms. They constitute a metaluminous to weakly peraluminous series showing mineralogical, petrographic and chemical characteristics distinctive of the high-K calc-alkaline suites. In the MORB-normalized trace element diagrams, the most primitive volcanic and plutonic rocks (basaltic andesites and gabbros with Mg No.=66 to 70; Ni=25 to 83 ppm; Cr=248 to 679 ppm) show LILE and LREE enriched patterns with troughs at Nb–Ta and Ti, a distinctive feature of subduction-related magmas. Field, petrographic, geochemical and isotopic evidence (initial 87Sr/86Sr ratios from 0.7057 to 0.7114; εNd values from −2.7 to −7.4; ∂18O values between 7.6 and 9.5‰) support a hybrid nature for both volcanic and plutonic rocks, originating through complex interactions between mantle-derived magmas and crustal materials. Only the scanty andalusite–cordierite and orthopyroxene–cordierite bearing peraluminous granites in the Cima d'Asta and Bressanone-Chiusa intrusive complexes can be interpreted as purely crustal melts (initial 87Sr/86Sr=0.7143–0.7167; initial εNd values between −7.9 and −9.6, close to average composition of the granulitic metasedimentary crust from the Ivrea Zone in the western Southern Alps). Although the Permian magmatism shows geochemical characteristics similar to those of arc-related suites, palaeogeographic restorations, and geological and tectonic evidence, seem not to support any spatial and/or temporal connection with subduction processes. The magmatism is post-collisional and post-orogenic, and originated in a regime of lithospheric extension and attenuation affecting the whole domain of the European Hercynian belt. A change in the convergence direction between Gondwana and Laurasia, combined with the effects of gravitational collapse of the Hercynian chain, could have been the driving mechanism for lithosphere extension and thinning, as well as for upwelling of hot asthenosphere that caused thermal perturbation and magma generation. In the above context, the calc-alkaline affinity and the orogenic-like signature of the Permian magmatism might result from extensive contamination of basaltic magmas, likely derived from enriched lithospheric mantle source(s), with felsic crustal melts.  相似文献   

13.
Radiogenic isotope data (initial Nd, Pb) and elemental concentrations for the Mooselookmeguntic igneous complex, a suite of mainly granitic intrusions in New Hampshire and western Maine, are used to evaluate petrogenesis and crustal variations across a mid-Paleozoic suture zone. The complex comprises an areally subordinate monzodiorite suite [377±2 Ma; εNd (at 370 Ma)=−2.7 to −0.7; initial 207Pb/204Pb=15.56–15.58] and an areally dominant granite [370±2 Ma; εNd (at 370 Ma)=−7.0 to −0.6; initial 207Pb/204Pb=15.55–15.63]. The granite contains meter-scale enclaves of monzodiorite, petrographically similar to but older than that of the rest of the complex [389±2 Ma; εNd (at 370 Ma)=−2.6 to +0.3; initial 207Pb/204Pb 15.58, with one exception]. Other granite complexes in western Maine and New Hampshire are 30 Ma older than the Mooselookmeguntic igneous complex granite, but possess similar isotopic signatures.

Derivation of the monzodioritic rocks of the Mooselookmeguntic igneous complex most likely occurred by melting of Bronson Hill belt crust of mafic to intermediate composition. The Mooselookmeguntic igneous complex granites show limited correlation of isotopic variations with elemental concentrations, precluding any significant presence of mafic source components. Given overlap of initial Nd and Pb isotopic compositions with data for Central Maine belt metasedimentary rocks, the isotopic heterogeneity of the granites may have been produced by melting of rocks in this crustal package or through a mixture of metasedimentary rocks with magmas derived from Bronson Hill belt crust.

New data from other granites in western Maine include Pb isotope data for the Phillips pluton, which permit a previous interpretation that leucogranites were derived from melting heterogeneous metasedimentary rocks of the Central Maine belt, but suggest that granodiorites were extracted from sources more similar to Bronson Hill belt crust. Data for the Redington pluton are best satisfied by generation from sources in either the Bronson Hill belt or Laurentian basement. Based on these data, we infer that Bronson Hill belt crust was more extensive beneath the Central Maine belt than previously recognized and that mafic melts from the mantle were not important to genesis of Devonian granite magma.  相似文献   


14.
Geochemical and isotopic investigation of three small mafic intrusions (Løyning: 1250 × 150 m, Hogstad: 2000 × 200 m, Koldal: 1250 × 500 m) in the marginal zones of the Egersund-Ogna (Løyning, Koldal) and Åna-Sira massif-type anorthosites (Hogstad) (Rogaland Anorthositic Province, south Norway: 930 Ma) provides new insights into the late evolution of anorthositic diapirs. These layered mafic intrusions are essentially of norite, gabbronorite as well as leuconorite and display conspicuous evidence of subsolidus recrystallization. In Løyning and Hogstad, the modal layering is parallel to the subvertical foliation in the enclosing anorthosite. The northern part of the Koldal intrusion cuts across the foliation of the anorthosite, whereas in its southern part the subvertical layering is parallel to the anorthosite's foliation. The regularity of the layered structures suggests that the layering was initially acquired horizontally and later tilted during the final movements of the diapirs.

The least differentiated compositions of plagioclase and orthopyroxene in the three intrusions (An59–En68 in Løyning, An49–En64 in Hogstad and An44–En61 in Koldal) and the REE contents in apatite (Hogstad) indicate that their parent magmas were progressively more differentiated in the sequence Løyning–Hogstad–Koldal. Isotopic data (Løyning: 87Sr/86Sr: 0.70376–0.70457, εNdt: + 6.8 to + 2.7; Hogstad: 87Sr/86Sr: 0.70537–0.70588, εNdt: + 2.1 to − 0.5; Koldal: 87Sr/86Sr: 0.70659–0.70911, εNdt: + 3.5 to − 1.6) also indicate that in this sequence, parent magmas were characterized by a progressively more enriched Sr and Nd isotopic signature. In Løyning, the parent magma was slightly more magnesian and anorthitic than a primitive jotunite; in Hogstad, it is a primitive jotunite; and, in Koldal, an evolved jotunite. Given that plagioclase and orthopyroxene of the three intrusions display more differentiated compositions than the orthopyroxene and plagioclase megacryts of the enclosing anorthosites, it is suggested that the parent magmas of the small intrusions are residual melts after anorthosite formation which were entrained in the anorthositic diapir during its rise from lower crustal chambers.

Calculated densities of primitive jotunites (2.73–2.74 at FMQ, 0.15% H2O, 200 ppm CO2, 435 ppm F, 1150 °C, 3 kb) and evolved jotunites (2.75–2.76 at FMQ, 0.30% H2O, 400 ppm CO2, 870 ppm F, 1135 °C, 3 kb) demonstrate that they are much denser than the plagioclase of the surrounding anorthositic crystal mush (2.61–2.65). Efficient migration and draining of dense residual melts through the anorthositic crystal mush could have taken place along sloping floors (zones of lesser permeability in the mush), which occur along the margins of the rising anorthositic diapirs. This process takes into account the restricted occurrence of the mafic intrusions in the margins of the massif anorthosites. In a later stage, when the anorthosite was nearly consolidated, the residual melts were more differentiated (evolved jotunites) and could have been extracted into extensional fractures in the cooling and contracting anorthositic body in a similar way as aplitic dikes are emplaced in granitic plutons. As in the Rogaland Anorthositic Province, these dikes are much more abundant than the small mafic intrusions, collection and transport along dikes was probably more efficient than draining through the crystal mush.  相似文献   


15.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

16.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   


17.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


18.
The Main Central Thrust (MCT) is a tectono-metamorphic boundary between the Higher Himalayan crystallines (HHC) and Lesser Himalayan metasediments (LHS), reactivated in the Tertiary, but which had already formed as a collisional boundary in the Early Paleozoic. To investigate the nature of the MCT, we analyzed whole-rock Nd isotopic ratios of rocks from the MCT and surrounding zones in the Taplejung–Ilam area of far-eastern Nepal, Annapurna–Galyang area of central Nepal, and Maikot–Barekot area of western Nepal. We define the MCT zone as a ductile–brittle shear zone between the upper MCT (UMCT) and lower MCT (LMCT). The protoliths of the MCT zone may provide critical constraints on the tectonic evolution of the Himalaya. The LHS is lithostratigraphically divided into the upper and lower units. In the Taplejung–Ilam area, different lithologic units and their εNd (0) values are as follows; HHC (− 10.0 to − 18.1), MCT zone (− 18.5 to − 26.2), upper LHS unit (− 17.2), and lower LHS unit (− 22.0 to − 26.9). There is a distinct gap in the εNd (0) values across the UMCT except for the southern frontal edge of the Ilam nappe. In the Annapurna–Galyang and Maikot–Barekot areas, different lithologic units and their εNd (0) values are as follows; HHC (− 13.9 to − 17.7), MCT zone (− 23.8 to − 26.2 except for an outlier of − 12.4), upper LHS unit (− 15.6 to − 26.8), and lower LHS unit (− 24.9 to − 26.8). These isotopic data clearly distinguish the lower LHS unit from the HHC. Combining these data with the previously published data, the lowest εNd (0) value in the HHC is − 19.9. We regard rocks with εNd (0) values below − 20.0 as the LHS. In contrast, rocks with those above − 19.9 are not always the HHC, and some parts of them may belong to the LHS due to the overlapping Nd isotopic ratio between the HHC and LHS. Most rocks of the MCT zone have Nd isotopic ratios similar to those of the LHS, but very different from those of the HHC. The spatial patterns in the distribution of εNd (0) value around the UMCT suggest no substantial structural mixing of the HHC and LHS during the UMCT activities in the Tertiary. A discontinuity in the spatial distribution of εNd (0) values is laterally continuous along the UMCT throughout the Himalayas. These facts support the theory that the UMCT was originally a material boundary between the HHC and LHS, suggesting the MCT zone was mainly developed with undertaking a role of sliding planes during overthrusting of the HHC in the Tertiary.  相似文献   

19.
印支期桂西南地区处于多板块构造交汇地带,其岩浆构造演化存在很大的争议.对桂西南十万大山盆地两侧酸性火山岩进行了系统的锆石年代学、全岩地球化学及Sr-Nd同位素地球化学研究.结果表明,十万大山盆地两侧酸性火山岩LA-ICP-MS锆石U-Pb年龄为240.5~248.4 Ma,形成于早三叠世.岩性主要为流纹岩,具有高SiO...  相似文献   

20.
东坑盆地位于南岭构造带东段,其中的流纹岩为该带燕山期最早的“流纹岩—玄武岩”双峰式火山岩组合的酸性端元.主量元素、微量元素、Sr-Nd-Pb-O-Hf同位素研究表明,流纹岩富硅、钾,贫镁、钙、钛,属亚碱性弱过铝质岩石;稀土元素富集,轻重稀土分异和铕负异常明显,表现典型的M型稀土元素4分组效应,富集高场强元素Ta、Hf、Zr、Nb、Ce、Y和大离子亲石元素Rb、Th、U、Ba、Ga,亏损大离子亲石元素Sr,具有A型流纹岩和高Sr-Ba流纹岩的微量元素特征;(87Sr/86Sr)i较高,(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i较低,εNd(t)、εHf(t)和δ18OV-SMOW较高,TDM2(Nd)和TDM2(Hf)较小.这些特征表明,东坑盆地流纹岩是拉张构造环境下源于新元古代亏损地幔和少量古老下地壳物质混合而成年轻下地壳部分熔融的产物,为早侏罗世早期南岭构造带东段处于拉张构造环境、地壳属正常厚度提供了岩石学证据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号