首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

2.
《Applied Geochemistry》2006,21(11):1837-1854
Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001–June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m−2 a−1). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m−2) showing that the residence time of Hg in this river is short.  相似文献   

3.
The Delaware River and Bay Estuary is one of the major urbanized estuaries of the world. The 100-km long tidal river portion of the estuary suffered from major summer hypoxia in the past due to municipal and industrial inputs in the urban region; the estuary has seen remarkable water quality improvements from recent municipal sewage treatment upgrades. However, the estuary still has extremely high nutrient loading, which appears to not have much adverse impact. Since the biogeochemistry of the estuary has been relatively similar for the past two decades, our multiple year research database is used in this review paper to address broad spatial and seasonal patterns of conditions in the tidal river and 120 km long saline bay. Dissolved oxygen concentrations show impact from allochthonous urban inputs and meteorological forcing as well as biological influences. Nutrient concentrations, although high, do not stimulate excessive algal biomass due to light and multiple nutrient element limitations. Since the bay does not have strong persistent summer stratification, there is little potential for bottom water hypoxia. Elevated chlorophyll concentrations do not exert much influence on light attenuation since resuspended bottom inorganic sediments dominate the turbidity. Dissolved inorganic carbon and dissolved and particulate organic carbon distributions show significant variability from watershed inputs and lesser impact from urban inputs and biological processes. Ratios of dissolved and particulate carbon, nitrogen, and phosphorus help to understand watershed and urban inputs as well as autochthonous biological influences. Owing to the relatively simple geometry of the system and localized anthropogenic inputs as well as a broad spatial and seasonal database, it is possible to develop these biogeochemical trends and correlations for the Delaware Estuary. We suggest that this biogeochemical perspective allows a revised evaluation of estuarine eutrophication that should have generic value for understanding other estuarine and coastal waters.  相似文献   

4.
Surface water gross primary production potential (pGPP), respiration (RESP), metabolism potential (pMET), and CO2 fluxes in Hilo Bay, Hawai’i, USA, were examined along two river plumes during storm (high-flow) and non-storm (low-flow) conditions. Significant differences in pGPP, RESP, and pMET were found between low- and high-flow conditions, with lowest rates of all processes occurring during high-flow conditions. CO2 fluxes were influenced by metabolic processes at all but one site, with the bay’s surface waters being autotrophic and a sink for atmospheric CO2 during low-flow conditions and less autotrophic and a source of atmospheric CO2 during high-flow conditions. Significant differences in pMET were found between the two river plumes during low-flow conditions at spatial scales of 1.5 km; however, no differences between river plumes were found during high-flow conditions. Our study suggests that an increase in storms associated with global climate change could impact surface water metabolic dynamics of tropical estuaries.  相似文献   

5.
The distribution of nutrients (N, P, Si, C) in the Wujiang River surface water was studied during the high-flow and low-flow periods in 2002. The results showed that nitrate nitrogen (NO3-N) is the main form of dissolved inorganic nitrogen (DIN) in the Wujiang River Basin. It accounts for about 90% of DIN. The average NO3-N concentrations in the mainstream are 147.5 μM in the high-flow period and 158.0 μM in the low-flow period, respectively. The average concentrations of total phosphorus (TP) are 6.43 μM in the high-flow period and 4.18 μM in the low-flow period, respectively. Of the various forms of phosphorus, particulate phosphorus (PP) has the highest percentage ( 62.9%) of TP in the high-flow period. In the low-flow period, however, phosphate is the main form of phosphorus, which accounts for 49% of TP. With the Wujiangdu Reservoir as the boundary, the concentrations of DIN and phosphorus in the upper reaches are different from those in the lower reaches of the Wujiang River. As a whole, the concentrations of DIN and phosphorus are both higher in the low-flow period than in the high-flow period. The spatial and temporal variations of DIN and phosphorus concentrations suggested that DIN and phosphorus come from agricultural and domestic wastewaters and groundwaters and that the Wujiangdu Reservoir has an important impact on the concentrations and distribution of DIN and phosphorus in the Wujiang River. The distribution patterns of dissolved silica (DSi) and dissolved organic carbon (DOC) are similar. Both of them maintain no change in the whole course of the river and their concentrations (with the exception of the reservoir itself) are higher in the high-flow period than in the low-flow period. The average DSi and DOC concentrations in the mainstream are 85.4, 84.6 μM in the high-flow period and 60.8, 53.9 μM in the low-flow period, respectively. The concentrations of nutrients in most of the major tributaries are lower than in the mainstream. This suggested that the contributions of most tributaries are relatively small but importance should be attached to the influence of some individual tributaries such as the Qingshuijiang River and the Weng'an River on the mainstream.  相似文献   

6.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

7.
Few studies have examined the dynamics of sediments and suspended organic matter and their export from headwater basins in the Andes Mountains to the Amazon River, despite the fact that the Andes are the primary source of sediments to the lower Amazon basin. We measured river discharge as well as the concentration, δ15N, δ13C, %N, and %OC of coarse and fine suspended sediments (CSS and FSS) in the Chorobamba River, located in the central Andean Amazon of Peru. Samples were taken at least weekly over an entire year (July 2004-July 2005), with additional sampling during storms. Concentrations of particulate organic matter (POM) were generally low in the study river, with concentrations increasing by up to several orders of magnitude during episodic rain events. Because both overall flow volumes and POM concentrations increased under stormflow conditions, the export of POM was enhanced multiplicatively during these events. We estimated that a minimum of 80% of annual suspended sediment transfer occurred during only about 10 days of the year, also accounting for 74% of particulate organic carbon and 64% of particulate organic nitrogen transport. Significant differences occurred between seasons (wet and dry) for δ13C of coarse and fine POM in the Chorobamba River, reflecting seasonal changes in organic matter sources. The time series data indicate that this Andean river exports approximately equal amounts of fine and coarse POM to the lower Amazon. The observation that the vast majority of sediments and associated OM exported from Andean rivers is mobilized during short, infrequent storm events and landslides has important implications for our understanding of Amazon geochemistry, especially in the face of incipient global change.  相似文献   

8.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

9.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

10.
The authors determine the concentrations of dissolved (<0.22 μm) rare earth elements (REE) and suspended particulate matter (SPM) of typical karst rivers in Guizhou Province, China during the high-flow period. The concentrations of acid-soluble REE extracted from SPM using diluted hydrochloric acid are also obtained to investigate water/particle interaction in the river water. The dissolved REE contents in the river water are extremely low in the rivers of the study. The dissolved REE distribution patterns normalized by the Post Archean Australia Shale (PAAS) in the karst rivers are not flat, show slight enrichment of heavy REE to light REE, and also have significant negative Ce and Eu anomalies. The acid-soluble REE appears to have similar distribution patterns as characterized by MREE enrichment and slight LREE depletion, with unremarkable Ce and Eu anomalies. The PAAS-normalized REE distribution patterns of SPM are flat with negative Eu anomalies. The contents and distribution patterns of REE in the SPM are closely related to the lithological character of the source rocks. The SPM contains almost all the REE produced in the process of surficial weathering. This demonstrates that particle-hosted REE are the most important form of REE occurrence. REE fractionation, which takes place during weathering and transport, leads to an obvious HREE enrichment in the dissolved loads relative to the SPM. Y/Ho ratio can be used to shed light on REE behaviors during water/particle interaction.  相似文献   

11.
 Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Received, March 1999 / Revised, July 1999 / Accepted, July 1999  相似文献   

12.
A mass balance has been calculated for the elements Li, B, and Sr in the Gulf of Papua from sampling undertaken during 1993 to 1999. Parameters measured included Fly, Kikori, and Purari River inputs of dissolved and particulate phases, removal flux to sediment traps at the base of the continental shelf slope, and century-scale accumulation rates in shelf and slope sediments (derived from excess 210Pb profiles in sediment cores). About 91% of river input Li was in particulate form, and there was conservative behavior of dissolved Li in the salinity gradient of the estuaries. Li accumulation rate in inner-shelf sediments was slightly less than river inputs, suggesting that more than 90% of Li river inputs were trapped in rapid aluminosilicate mud accumulation zones of the inner shelf (<50-m depth). Li removal rate to sediment traps at the base of the slope at ∼1000-m water depth was an order of magnitude smaller than the inner-shelf sedimentation. Export of Li to deep water Coral Sea was estimated to be 1.2 × 108 mol yr−1, and this amount is equivalent to the riverine dissolved Li annual supply rate. About 66% of river input of B was in the particulate phase, and low dissolved B concentrations in freshwater were conservatively mixed with higher concentrations of B in seawater across the salinity gradient. Removal of B to inner-shelf sediments was about 83% of the total river input, indicating a small export of B (1.2 × 108 mol yr−1) to the Coral Sea. About half of the dissolved B input from rivers is sorbed to particles and trapped in inner-shelf sediments. Only 24% of river input of Sr was in particulate form, and low freshwater concentrations of dissolved Sr were conservatively mixed with higher concentrations of Sr in seawater across the salinity gradient. Only 20% of total river inputs of Sr were buried in shelf sediments, and there was a large export (7.3 × 108 mol yr−1) of Sr off the shelf to the Coral Sea. A sediment core from a rapidly accumulating mud deposition zone of the inner shelf shows twofold sympathetic variations in Li, B, and Sr/Ca supply rates over 200- to 1000-yr time intervals.  相似文献   

13.
The Delaware Estuary is heavily urbanized with elevated concentrations of phosphorus from industrial and municipal inputs. For 24 research cruises during 1986–1988, total phosphorus (TP) concentration was highest near maximum inputs in the tidal river and at low salinity where turbidity was maximal. In these contiguous regions, average TP concentration over the study period was 5.3–6.1 μM. Downstream of the TP peak in the high turbidity zone of the estuary, TP decreased to minimum concentrations (1.3–1.5 μM) near the mouth of Delaware Bay. Distributions of dissolved reactive (DRP), dissolved organic (DOP), and particulate (PP) phosphorus along the estuary reflected spatial and temporal patterns in phosphorus inputs, turbidity, river flow, and biological production. In the river, DRP was 2–4 μM (51–65% of TP) and inversely related to river flow. PP, although enriched in the river (1–3 μM), was highest (>4 μM) in the turbidity maximum at low salinity. In the bay, distributions of DRP, PP, and DOP were all linked, in different ways, to biological production. The dependence of DOP on production was, however, complex and affected by DRP concentrations. During the past 30 yr, there has been a fourfold decrease in TP concentrations in the tidal river of the Delaware Estuary. This dramatic decrease in TP, however, is contrasted by an apparent increase in DRP concentration over the past 12 yr. This apparent increase in DRP may be linked to improved water quality (e.g., higher pH) in the river over the past decade.  相似文献   

14.
Dissolved (dialysis in situ) and total concentrations ofCu, Zn, Cd and Al in eight mining polluted rivers in the Røros area, central Norway, were determinedby atomic absorption spectrometry (flame and graphite furnace) and compared to pH, Caconcentration and alkalinity through seasonal variations in river discharge. Totalconcentrations of the metals were highest during early spring flood and during summer andautumn rain episodes. Dissolved concentrations also increased as the spring floodproceeded, but small discharge peaks within this 2 month period as well as a considerableautumn flood episode appeared to lower rather than to raise the dissolved metal concentrations.Consequently the dissolved fractions of Zn, Cd and Al showed a significant negative correlationwith river discharge, and were low at the discharge peaks. Possibly high sediment concentrationsoccurring at high flood conditions more than counteracted desorption induced by pHdecrease, and led to decreased dissolved fractions through adsorption. Cu speciationon the other hand seemed to be more closely linked to pH. Alkalinity and Ca concentration,both assumed to protect aquatic life from metal pollution, were significantly lowerduring episodes with high Cu and Al total concentrations.  相似文献   

15.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

16.
A preliminary assessment of the Wujiangdu Reservoir examined nutrient distribution and transport. Water samples were collected in the summer (July) of 2004, during the high-flow season. Inorganic nutrients (N, P, Si) and chlorophyll a (chl a) concentrations of the Wujiangdu Reservoir and its inflow rivers were analyzed. Other water parameters (dissolved oxygen, pH, temperature, and electrical conductivity) were measured as well. The results show gradually decreasing concentrations of NO3 ?-N and dissolved silicate in the surface water moving downstream to the dam of the Wujiangdu Reservoir. Additionally, soluble reactive phosphorus concentrations measured very low, with most falling below the sensitivity threshold of the method used in surface waters. Particulate phosphorus and NO3 ?-N were the predominant species of phosphorus and nitrogen in the reservoir, respectively. The concentration of nutrients in the Yeji River was the largest of all inflow rivers. The maximum concentration of chl a was found near the dam. These results reflect upstream conditions similar to that of a river, and reservoir conditions near the dam similar to that of a natural lake system.  相似文献   

17.
Major ionic composition and other chemical parameters were determined at five sampling stations on the Salí River (Province of Tucumán, Argentina). The heavy human usage of the river causes increased levels of dissolved ions, from the dissolution of halite and gypsum, and from the weathering of basic sediments. Correlations demonstrate that sodium chloride and sulphate, and calcium carbonate are the main contributors to dissolved ions in the river. In the polluted region, south of the Celestino Gelsi dam, the main source of calcium and sulphate is the dissolution of gypsum. Large amounts of halite are also dissolved. Weathering of biotite, K-feldspar and albite are suggested by the data. Conductivity, dissolved oxygen and organic matter all indicate severe contamination by organic matter (mainly from sugar-cane processing) in the lower course. The data also demonstrate a substantial improvement in water quality before the discharge of the river at the Río Hondo dam. Data from the Colorado (a tributary of the Salí River) and Medina rivers are also analyzed and compared.  相似文献   

18.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

19.
Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai‘i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8–77% (median 30%) of discharge, 57–99% (median 93%) of SPM fluxes, 11–79% (median 36%) of dissolved nutrient fluxes and 52–99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ≥16 (the ‘Redfield ratio’ for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22–82%; median 69% of total phosphorus, range 49–93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks–years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.  相似文献   

20.
《Applied Geochemistry》1995,10(2):133-144
The effect of local geology and land-use practices on dissolved U was investigated by analysis of surface water and some springs in the Arkansas River valley of southeastern Colorado. Water samples were collected during a 2 week period in April, 1991. The rate of increase of U concentration with distance downriver increased markedly as the river flowed from predominantly undeveloped lands underlain by igneous and metamorphic rocks to agriculturally developed lands underlain by marine shale and limestone. An additional abrupt increase in dissolved U was observed along the section of river where discharge is often greatly reduced because of extensive diversions for irrigation and where remaining flow is largely composed of irrigation return water. Dissolved U in this last section of river and in most of its tributaries exceeded the proposed U.S. drinking water standard of 20 μ/L In water samples collected from agricultural areas dissolved U showed strong positive correlation with major dissolved constituents Na, Ca, Mg, and SO4 that increase as a result of sulfate mineral dissolution and clay mineral ion-exchange reactions in weathered shale bedrock and shaley soils. Highly soluble minor and trace elements Cl, Li, B, Sr, and Se that are not subject to strong sorptive uptake or precipitation in this setting also correlated positively with U. These combined observations indicate that natural leaching of U-bearing shale bedrock and derivative soils, additional leaching of rock and soil by irrigation water, and evaporative concentration in a semi-arid climate can produce concentrations of dissolved U in surface water and shallow ground water that may threaten nearby drinking water supplies. Other agriculturally developed areas of the semi-arid Western U.S. with similar geology are likely to contain high concentrations of U in irrigation drain water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号