首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents information on the levels of trace elements in sediments collected at Deception and Penguin Islands and tracks the sources of natural and anthropogenic inputs of metals into this sub-Antarctic region. The results suggest that natural processes, such as volcanic activity, hydrothermal processes and sediment transport, are more important than anthropogenic inputs in accounting for the metal concentrations measured in sediments at Deception Island. The higher levels of trace metals recorded in sediments at Penguin Island seem to reflect the composition of the source rocks of the island, which are dominated by the olivine-basalt group. Our findings show that human activities in the study areas may contribute to negligible levels of trace metals associated with anthropogenic inputs (e.g., Cr and Zn) in sediments, and these results can be used in the future as background levels related to low anthropogenic impacts.  相似文献   

2.
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

3.
《Marine pollution bulletin》2009,58(6-12):624-631
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

4.
The Western Scheldt river and estuary is known to be highly polluted as it receives industrial, agricultural and domestic effluents from one of the most populated and industrialised zones in Europe. Aquatic organisms are exposed to pollutants, specifically metals that are present in different environmental phases, e.g. dissolved, suspended material or sediment phases. The objective of this study was to study the relationship that exists between environmental metal levels, the degree of metal uptake by aquatic organisms with the concomitant biological responses. For this purpose the bivalve mollusk, Mytilus edulis, was selected as bioaccumulation indicator organism. Environmental (water and sediment) and mussel samples were collected during the late winter (March 2000) from sampling sites in the Scheldt estuary. Sites were selected to represent a salinity gradient from the mouth of the estuary to the furthest distribution area of mussels upstream in the system. Together with standard water quality parameters (e.g. salinity, dissolved oxygen, dissolved organic carbon, etc.) concentrations of twelve metals were analysed in the water (dissolved and suspended matter) and sediments. Levels of these metals were also measured in the soft tissue of M. edulis, together with concomitant biomarker responses in resident mussel populations at each site. The biomarkers that were included in this study were condition index, scope for growth, survival in air, cell membrane stability, DNA damage, and metallothioneins. Data were subjected to multivariate statistical analysis. The physico-chemical parameters and metals in the environmental samples clustered the sites to reflect the distribution based on the salinity gradient. Bioaccumulation results revealed increased metal uptake along a pollution gradient with the highest metal bioaccumulation occurring at the upstream most sites and therefore closest to the in the industrial activities. However, the biomarker responses clustered the sites in a manner that reflected the influence of combination of internal exposure (bioaccumulation) and external exposure (physico-chemical conditions). These differences in biomarker responses clearly demonstrated were attributed to abiotic factors other than metal pollution alone e.g. localized short-term increases in increased suspended sediment concentrations and decreased dissolved oxygen concentrations.  相似文献   

5.
Izmir Bay is one of the great natural bays of the Mediterranean. The surface sediment and fish samples were collected during 1997-2009. The sediment concentrations of inner bay showed significant enrichments during sampling periods. Outer and middle bays exhibited low levels of metal enrichments except the estuary of Gediz River. The concentrations were generally higher than the background levels from the Mediterranean and Aegean except Cd and Pb levels gradually decreased. Metal EF is used as an index to evaluate anthropogenic influences of metals in sediments. Maximum metal enrichment was found for Hg in the outer bay, while Pb indicated maximum enrichment in the middle-inner bays. Metal levels were evaluated in sediments in accordance with the numerical SQG of the USEPA. The levels of fish tissues were lower than the results reported from polluted areas of the Mediterranean. The highest BAFs were detected for Hg and Cd in fish.  相似文献   

6.
Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.  相似文献   

7.
The aim of this study was to evaluate the usefulness of oxidative stress biomarkers of pollution in native mussels Mytilus edulis chilensis from the Beagle Channel. Spatial and seasonal variations of catalase, glutathione-S-transferase and lipid peroxidation in gills and digestive gland were analyzed in relation to environmental parameters, heavy metals in sediment and in tissue. Four sites with anthropogenic impact and a control site were selected and monitored during the four seasons of 2007. We found significant differences among sites in concentrations of dissolved nutrients and heavy metals in sediments, with the highest values recorded at sites with anthropogenic pressure. Different patterns were observed between concentrations of metals in tissues and in sediments suggesting differences in bioavailability. There were also significant differences in biomarker responses among sites, despite the strong seasonal variability. Our results showed relatively moderate levels of pollution in the study area as a result of urban influences.  相似文献   

8.
The purpose of this study was to assess the chemical partitioning of selected heavy metals(Fe,Mn,Cu,Zn,Pb,Cr,Co and Ni) in 10 surface sediments at Tirumalairajan River Estuary in the southeastern coast of India.A five-step sequential extraction technique was used to assess the environmental status of heavy metals.Most of metals were considered to be immobile due to the high availability in the residual fraction of heavy metals.The sediments of Tirumalairajan River estuary had not been polluted by heavy metals,and they didn’t pose any high ecological risk.The seasonal variations of heavy metals were slightly higher in summer than in monsoon season.Factor analysis was also carned out to understand the associations of metals in different fractions with sand,silt,clay,organic matter,pH,salinity and other metals.The relationship between the Q-mode and R-mode cluster analyses was useful for identifying the pollution levels in both seasons.It was proved that the enrichment of heavy metals was related with geogenic and anthropogenic sources.The information on total metal concentrations in sediments was not sufficient for assessing the metal behavior in the environment,but the sequential extraction technique was more effective in estimating the environmental impact of contaminated sediments.  相似文献   

9.
Concentrations of Co, Cu, Pb and Zn were determined in 107 surficial sediment samples from the continental margin adjacent to Sydney, Australia. The spatial distributions of trace metals in the sediments and the mud content are similar and increase with greater distance from the coast. In contrast, normalization of the concentrations of Cu, Pb and Zn in the total sediment with Co enables a coastal anthropogenic source to be identified. The spatial distribution of Co-normalized concentrations of Cu, Pb and Zn in total sediment is similar to the distribution of these trace metals in the fine fraction of sediment (<62.5 microm), indicating that Co may be used as a normalizing element for determining contaminant sources in the marine environment near Sydney.  相似文献   

10.
The Seine estuary (France) is one of the world's macrotidal systems that is most contaminated with heavy metals. To study the mercury-resistant bacterial community in such an environment, we have developed a molecular tool, based on competitive PCR, enabling the quantification of Gram-negative merA gene abundance. The occurrence of the Gram-negative merA gene in relation with the topology (erosion/deposit periods) and the mercury contamination of three contrasted mudflats was investigated through a multidisciplinary approach and compared with a non-anthropized site (Authie, France). The higher abundance of the Gram-negative merA gene in the Seine estuary mudflats indicates a relationship between the degree of anthropization and the abundance of the merA gene in the mudflat sediments. In the Seine mudflats, the maxima of abundance are always located in fresh sediment deposits. Therefore, the abundance is closely related with the hydrosedimentary processes, which thus seem to be determining factors in the occurrence of the Gram-negative merA gene in the surface sediments of the Seine's mudflat.  相似文献   

11.
Vanadium and nickel are two important indicators of oil pollution. Lengthy exposure to these elements causes serious harmful effects in human health, different harsh allergies being examples. The accumulation of two heavy metals (Ni and V) in sediment and the soft and hard tissues of Saccostrea cucullata were analyzed at three sampling sites along the coast of Lengeh Port, Persian Gulf. Results indicated at all the sampling sites; the Ni levels in soft tissues (STs) were higher than in the shells (SHs) and sediments, whereas the V levels were higher in the sediments. In addition, meaningful relationship (r = 0.65; p < 0.05) was observed across Ni levels in ST of S. cucullata and sediment, while for V concentrations a strong relationship (r = 0.83; p < 0.01) was found in SH of S. cucullata and sediment. This indicates that ST and SH of oyster can be considered as a biomonitoring agent for Ni and V levels, in coastal waters, respectively. The exposure of the consumer is compared directly to minimal risk level and provisional maximum tolerable daily intake. Result indicated that levels of Ni and V were within the safety limits for human consumption.  相似文献   

12.
Heavy metal contamination levels are generally higher in estuaries than in the open sea. Some estuaries, the Seine estuary for example, have particularly high pollution levels of metals, yet continue to support a very high benthic biomass and remain quite productive. Measurements of sediment contamination are highly variable due to diverse chemical analysis methods, sediments origin and sources of contaminants found in the estuaries. Salinity appears to be the principal factor controlling contaminant distribution in the sediment and the overlying and/or interstitial waters; it also affects the bioavailability of contaminants in estuarine sediments. Of course, the response to contaminants varies greatly among species and assemblages. Trace metals explain only a small part of the variation in benthic community structure. Some species, such as the shrimp Crangon crangon, appears vulnerable to metal pollution, while other species, such as Scrobicularia plana, are able to tolerate quite high levels of cadmium in their tissue. This paper demonstrates the wide variability of benthic responses to contamination, which is probably due to the high spatio-temporal heterogeneity of the estuary. To reduce the problems due the heterogeneity and variability observed to date in the available results, it will be necessary to encourage integrated estuarine studies, in which sedimentologists, chemists, and biologists work together on the same campaigns at the same sites.  相似文献   

13.
Salt marshes have recently been considered to be a major part of the coastal system and have played a key role in the development of the UK coastal management strategy. Managed Retreat (MR) is a process aimed to restore salt marshes by realignment of the seawalls allowing tidal inundation of low value agricultural land. The resultant marshes are expected to function both as an integral part of the flood defence system and as an ecological conservation area. We report on the effects of salt marsh restoration on metal and nutrient loading of the sediment at the Orplands Farm MR site, Essex, UK. Surficial grab and sediment cores were collected from the two fields that comprise the site. The heavy metals, Cd, Cr, Cu, Hg, Pb, Ni and Zn were analysed to determine changes in anthropogenic inputs to sediments. The major ions, Al, Ca, Fe, K, Mg, Mn and Na were also monitored to identify changes in sediment geochemistry. Analysis of the cored sediments after inundation for Na and Sr demonstrated that penetration of estuarine water had, within 2 yr of exposure, reached an average depth of 20 cm. The study observed that input of heavy metals had occurred to the sediments with the most significant being that of Pb, however increases were also observed for Cr and Cu. However, concentrations of Cd in the MR sediments decreased from 1995 to 1997. For the major metals within both fields it was found that the dominant changes were those of enrichment of marine associated metals, Ca, K, Mg and Na via inputs from tidal inundation. The concentration of Ca in the sediments was further enriched by the deposition of carbonates to the sediments. One field demonstrated a significant loss of Fe from sediments which corresponded to changes in redox potential of the sediments. Differences observed in geochemical profiles between the two fields of the site were attributed to differences in land use prior to flooding.  相似文献   

14.
Skadar Lake,the largest lake on the Balkan Peninsula,is famous for a wide range of endemic and rare,or even endangered plant and animal species.Different anthropogenic pressures have,however,influenced the fragile equilibria of the lake ecosystem,with metal pollution as one of the primary concerns.Therefore,this study investigated spatial distribution of metal pollutants in the water and sediment phase of Skadar Lake,and anthropogenic and environmental factors affecting this distribution.A sieving analysis showed that sediment in Skadar Lake is mainly distributed in the three smallest fractions(colloid,clay and silt).Eleven metals were analyzed in the lake surface and bottom water,and only six of them were detected:potassium,magnesium,calcium,nickel,aluminum and manganese.They were all present at low concentrations.In contrast,sediments contained elevated levels of some metals with concentrations between 28.1-126.8 mg kg~(-1) for Ni,23.6-79.2 mg kg~(-1) for Cr,9.2-36.9 mg kg~(-1) for Cu,199-878 mg kg~(-1) for Mn and 9.6-23.1 g kg~(-1) for Fe.Nickel exceeded consensus-based guidelines for safety towards freshwater dwelling organisms.The organic matter content of the sediment fluctuated between 4.7 and 21.5%.No correlations were found between metal concentrations,organic matter and sediment particle size fractions,suggesting that the latter are not the main factors controlling metal accumulation in Skadar Lake.  相似文献   

15.
Predominantly anthropogenic Cu, Zn, and Pb present in an approximately 100 yr old mud flat and salt marsh deposit at a high intertidal, oxic site are bound chiefly in the Fe---Mn oxide-hydroxide, organic and residual phases. The amount of each metal in the organic phase is significant and declines with increase in the age of the buried sediment, in harmony with the total amount of organic matter remaining. Application of a quantitative geochemical model provides evidence that those metals remobilized by the progressive oxic degradation of the organic matter do not swell the oxide phase also present in the deposit, but are free to be flushed back into the estuary.  相似文献   

16.
Mangroves have been observed to possess a tolerance to high levels of heavy metals, yet accumulated metals may induce subcellular biochemical changes, which can impact on processes at the organism level. Six month-old seedlings of the grey mangrove, Avicennia marina (Forsk.) Vierh, were exposed to a range of Cu (0-800 micrograms/g), Pb (0-800 micrograms/g) and Zn (0-1000 micrograms/g) concentrations in sediments under laboratory conditions, to determine leaf tissue metal accumulation patterns, effects on photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), and the activity of the antioxidant enzyme peroxidase. Limited Cu uptake to leaves was observed at low sediment Cu levels, with saturation and visible toxicity to Cu at sediment levels greater than 400 micrograms/g. Leaf Pb concentrations remained low over a range of Pb sediment concentrations, up to 400 micrograms/g Pb, above which it appeared that unrestricted transport of Pb occurred, although no visible signs of Pb toxicity were observed. Zn was accumulated linearly with sediment zinc concentration, and visible toxicity occurring at the highest concentration, 1000 micrograms/g Zn. Significant increases in peroxidase activity and decreases in photopigments were found with Cu and Zn at concentrations lower than those inducing visible toxicity. Significant increases in peroxidase activity only, were found when plants were exposed to Pb. Positive linear relationships between peroxidase activity and leaf tissue metal concentrations were found for all metals. Significant linear decreases in photosynthetic pigments with increasing leaf tissue metal concentrations were observed with Cu and Zn only. Photosynthetic pigments and peroxidase activity may be applicable as sensitive biological indicators of Cu and Zn stress, and peroxidase activity for Pb stress in A. marina.  相似文献   

17.
Contaminated sediments deposited within urban water bodies commonly exert a significant negative effect on overlying water quality. However, our understanding of the processes operating within such anthropogenic sediments is currently poor. This paper describes the nature of the sediment and early diagenetic reactions in a highly polluted major urban water body (the Salford Quays of the Manchester Ship Canal) that has undergone remediation focused on the water column. The style of sedimentation within Salford Quays has been significantly changed as a result of remediation of the water column. Pre‐remediation sediments are composed of a range of natural detrital grains, predominantly quartz and clay, and anthropogenic detrital material dominated by industrial furnace‐derived metal‐rich slag grains. Post‐remediation sediments are composed of predominantly autochthonous material, including siliceous algal remains and clays. At the top of the pre‐remediation sediments and immediately beneath the post‐remediation sediments is a layer significantly enriched in furnace‐derived slag grains, input into the basin as a result of site clearance prior to water‐column remediation. These grains contain a high level of metals, resulting in a significantly enhanced metal concentration in the sediments at this depth. Porewater analysis reveals the importance of both bacterial organic matter oxidation reactions and the dissolution of industrial grains upon the mobility of nutrient and chemical species within Salford Quays. Minor release of iron and manganese at shallow depths is likely to be taking place as a result of bacterial Fe(III) and Mn(IV) reduction. Petrographic analysis reveals that the abundant authigenic mineral within the sediment is manganese‐rich vivianite, and thus Fe(II) and Mn(II) released by bacterial reactions may be being taken up through the precipitation of this mineral. Significant porewater peaks in iron, manganese and silicon deeper in the sediment column are most probably the result of dissolution of furnace‐derived grains in the sediments. These species have subsequently diffused into porewater above and below the metal‐enriched layer. This study illustrates that the remediation of water quality in anthropogenic water bodies can significantly impact upon the physical and chemical nature of sedimentation. Additionally, it also highlights how diagenetic processes in sediments derived from anthropogenic grains can be markedly different from those in sediments derived from natural detrital material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Levels of Cr, Cu, Fe, Pb, Ni, and Zn in surface sediment from the Voisey's Bay area of coastal Labrador showed no evidence of recent anthropogenic input of metals. Metal concentrations in surface sediments, normalized to Li, fell within the 95% confidence limits of the background levels. Further analysis showed that the Li-metal regression lines from the surface sediments and sediments from 30-cm depth had the same slope and intercepts, suggesting that there was no difference in the metal content of the sediments at the two depths. Li-metal relationships can be used as a measure of the natural variability of the metal concentrations for the region and will serve as a baseline against which future anthropogenic affects may be assessed.  相似文献   

19.
20.
Sediment loadings and leaf accumulation of the heavy metals copper (Cu), lead (Pb) and zinc (Zn) with accompanying changes in leaf chlorophylls' (a + b), carotenoids and the antioxidant enzyme peroxidase were examined in the grey mangrove Avicennia marina (Forsk.) Vierh, in order to determine the applicability of these parameters as biomarkers of heavy metal stress under field conditions. Copper was found to show limited accumulation to leaf tissue, following a linear relationship at lower sediment concentrations, with saturation at higher sediment Cu concentrations. Copper accumulation relationships to leaf tissue were maintained temporally, and increases in sediment Cu, salinity, and decreases in sediment pH and Zn contributed to the accumulation of Cu to leaf tissue. Lead showed a significant relationship between sediment and leaf Pb levels, but accumulation was minimal. Accumulation relationships for Pb were not maintained temporally, and high sediment Pb, low pH and organic content increased bioavailability and accumulation of Pb. Zinc was the most mobile of all metals and was accumulated to the greatest quantities in leaf tissue in a dose-dependant relationship. Some temporal variation in Zn accumulation occurred, and higher sediment pH, organic content Zn and Pb promoted leaf Zn accumulation. Leaf Cu and Zn showed the strongest relationship with peroxidase activity and to a lesser degree Pb. Zinc was the only accumulated metal to show relationship maintenance with peroxidase activity over time. It was found that peroxidase activity best reflects the total phytotoxic effect from the combined metal stress of all three accumulated leaf metals. The only significant photopigment relationship evidenced was that of leaf Zn with the chlorophyll a/b ratio, but was not maintained temporally. Peroxidase activity may be an appropriate biomarker for Zn or total metal accumulation in leaf tissue, and the chlorophyll a/b ratio a suitable biomarker of Zn accumulation though requires temporal monitoring under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号