首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Velocity variability at scales smaller than the size of a solute plume enhances the rate of spreading of the plume around its center of mass. Macroscopically, the rate of spreading can be quantified through macrodispersion coefficients, the determination of which has been the subject of stochastic theories. This work compares the results of a volume-averaging approach with those of the advection dominated large-time small-perturbation theory of Dagan [1982] and Gelhar and Axness [1983]. Consider transport of an ideal tracer in a porous medium with deterministic periodic velocity. Using the Taylor-Aris-Brenner method of moments, it has been previously demonstrated [Kitanidis, 1992] that when the plume spreads over an area much larger than the period, the volume-averaged concentration satisfies the advection-dispersion equation with constant coefficients that can be computed. Here, the volume-averaging analysis is extended to the case of stationary random velocities. Additionally, a perturbation method is applied to obtain explicit solutions for small-fluctuation cases, and the results are compared with those of the stochastic macrodispersion theory. It is shown that the method of moments, which uses spatial averaging, for sufficiently large volumes of averaging yields the same result as the stochastic theory, which is based on ensemble averaging. The result is of theoretical but also practical significance because the volume-averaging approach provides a potentially efficient way to compute macrodispersion coefficients. The method is applied to a simplified representation of the Borden aquifer. Received: December 28, 1998  相似文献   

3.
We analyze the impact of conditioning to measurements of hydraulic transmissivity on the transport of a conservative solute. The effects of conditioning on solute transport are widely discussed in the literature, but most of the published works focuses on the reduction of the uncertainty in the prediction of the plume dispersion. In this study both ensemble and effective plume moments are considered for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis, involving a steady and spatially inhomogeneous velocity field, is developed by using the stochastic finite element method. Results show that conditioning reduces the ensemble moment in comparison with the unconditioned case, whereas the effective dispersion may increase because of the contribution of the spatial moments related to the lack of stationarity in the flow field. As the number of conditioning points increases, this effect increases and it is significant in both the longitudinal and transverse directions. Furthermore, we conclude that the moment derived from data collected in the field can be assessed by the conditioned second-order spatial moment only with a dense grid of measured data, and it is manifest for larger initial lengths of the plume. Nevertheless, it seems very likely that the actual dispersion of the plume may be underestimated in practical applications.  相似文献   

4.
5.
The spatial moments of a contaminant plume undergoing bio-attenuation are coupled to the moments of microbial populations effecting that attenuation. In this paper, a scalable inverse method is developed for estimating field-scale Monod parameters such as the maximum microbial growth rate (μmax), the contaminant half saturation coefficient (Ks), and the contaminant yield coefficient (Ys). The method uses spatial moments that characterize the distribution of dissolved contaminant and active microbial biomass in the aquifer. A finite element model is used to generate hypothetical field-scale data to test the method under both homogeneous and heterogeneous aquifer conditions. Two general cases are examined. In the first, Monod parameters are estimated where it is assumed a microbial population comprised of a single bacterial species is attenuating one contaminant (e.g., an electron donor and an electron acceptor). In a second case, contaminant attenuation is attributed to a microbial consortium comprised of two microbial species, and Monod parameters for both species are estimated. Results indicate the inverse method is only slightly sensitive to aquifer heterogeneity and that estimation errors decrease as the sampling time interval decreases with respect to the groundwater travel time between sample locations. Optimum conditions for applying the scalable inverse method in both space and time are investigated under both homogeneous and heterogeneous aquifer conditions.  相似文献   

6.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

7.
Numerical simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity, , were conducted in a three-dimensional heterogeneous and statistically isotropic aquifer. The hydraulic conductivity, K(x), is modeled as a random field which is assumed to be log-normally distributed with an exponential covariance. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume and the plume centroid variances were simulated with 1600 Monte Carlo (MC) runs for three variances of log K, Y2=0.09, 0.23, and 0.46, and a square source normal to of three dimensionless lengths. It is showed that 1600 MC runs are needed to obtain stabilized results in mildly heterogeneous aquifers of Y20.5 and that large uncertainty may exist in the simulated results if less MC runs are used, especially for the transverse second spatial moments and the plume centroid variance in transverse directions. The simulated longitudinal second spatial moment and the plume centroid variance in longitudinal direction fit well to the first-order theoretical results while the simulated transverse moments are generally larger than the first-order values. The ergodic condition for the second spatial moments is far from reaching in all cases simulated and transport in transverse directions may reach ergodic condition much slower than that in longitudinal direction.  相似文献   

8.
We analyze the impact of a linear trend in the mean log-conductivity on the transport of a conservative tracer in a bounded domain. The effects of such a linear trend on solute transport were analyzed in depth for unbounded domains (Rubin and Seong, Water Resour Res 30(11):2901–2911, 1994; Indelman and Rubin, Water Resour Res 31(5):1257–1265, 1995; Water Resour Res 32(5):1257–1265, 1996), whereas studies concerning this special case of medium nonstationarity in finite domains usually focus on head or flow statistics (Guadagnini et al., Stoch Environ Res Risk Assess, 17:394–407, 2003). In this study both ensemble and effective plume moments are provided for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis involving a steady velocity field spatially nonstationary is developed by using the stochastic finite element method. Results show that ensemble moments are affected by increasing trends both parallel and normal to the mean flow direction, but the impact on effective plume moments is very different. A parallel trend does not seem to influence the effective second moments; while a normal trend, although modifies the transverse effective moment only weakly, strongly increases the longitudinal one, especially for large initial sizes of the source. Furthermore, the increase of the particle displacement variance produced by a parallel trend in the finite domain disagrees with the results obtained in an unbounded domain, due to the boundary conditions here considered making both head and velocity moments nonstationary and nonsymmetric.  相似文献   

9.
A Eulerian analytical method is developed for nonreactive solute transport in heterogeneous, dual-permeability media where the hydraulic conductivities in fracture and matrix domains are both assumed to be stochastic processes. The analytical solution for the mean concentration is given explicitly in Fourier and Laplace transforms. Instead of using the fast fourier transform method to numerically invert the solution to real space (Hu et al., 2002), we apply the general relationship between spatial moments and concentration (Naff, 1990; Hu et al., 1997) to obtain the analytical solutions for the spatial moments up to the second for a pulse input of the solute. Owing to its accuracy and efficiency, the analytical method can be used to check the semi-analytical and Monte Carlo numerical methods before they are applied to more complicated studies. The analytical method can be also used during screening studies to identify the most significant transport parameters for further analysis. In this study, the analytical results have been compared with those obtained from the semi-analytical method (Hu et al., 2002) and the comparison shows that the semi-analytical method is robust. It is clearly shown from the analytical solution that the three factors, local dispersion, conductivity variation in each domain and velocity convection flow difference in the two domains, play different roles on the solute plume spreading in longitudinal and transverse directions. The calculation results also indicate that when the log-conductivity variance in matrix is 10 times less than its counterpart in fractures, it will hardly influence the solute transport, whether the conductivity field is matrix is treated as a homogeneous or random field.  相似文献   

10.
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these factors. We developed these models as generalizations of the first-order solutions in the log-conductivity variance of point concentration proposed by [Fiori A, Dagan G. Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 2000;45(1–2):139–163]. Our first-order solutions compare well with numerical simulations for small and moderate formation heterogeneity and from small to large sampling and source volumes. However, their performance deteriorates for highly heterogeneous formations. Successively, we used our models to study the interplay among sampler size, source volume, and PSD. Our analysis shows a complex and important interaction among these factors. Additionally, we show that the relative importance of these factors is also a function of plume age, of aquifer heterogeneity, and of the measurement location with respect to the mean plume center of gravity. We found that the concentration moments are chiefly controlled by the sampling volume with pore-scale dispersion playing a minor role at short times and for small source volumes. However, the effect of the source volume cannot be neglected when it is larger than the sampling volume. A different behavior occurs for long periods, which may be relevant for old contaminations, or for small injection volumes. In these cases, PSD causes a significant dilution, which is reflected in the concentration statistics. Additionally, at the center of the mean plume, where high concentrations are most likely to occur, we found that sampling volume and PSD are attenuating mechanisms for both concentration ensemble mean and coefficient of variation, except at very large source and sampler sizes, where the coefficient of variation increases with sampler size and PSD. Formation heterogeneity causes a faster reduction of the ensemble mean concentrations and a larger uncertainty at the center of the mean plume. Therefore, our results highlight the importance of considering the combined effect of formation heterogeneity, exposure volume, PSD, source size, and measurement location in performing risk assessment.  相似文献   

11.
12.
This study evaluates and compares two methodologies, Monte Carlo simple genetic algorithm (MCSGA) and noisy genetic algorithm (NGA), for cost-effective sampling network design in the presence of uncertainties in the hydraulic conductivity (K) field. Both methodologies couple a genetic algorithm (GA) with a numerical flow and transport simulator and a global plume estimator to identify the optimal sampling network for contaminant plume monitoring. The MCSGA approach yields one optimal design each for a large number of realizations generated to represent the uncertain K-field. A composite design is developed on the basis of those potential monitoring wells that are most frequently selected by the individual designs for different K-field realizations. The NGA approach relies on a much smaller sample of K-field realizations and incorporates the average of objective functions associated with all K-field realizations directly into the GA operators, leading to a single optimal design. The efficacy of the MCSGA-based composite design and the NGA-based optimal design is assessed by applying them to 1000 realizations of the K-field and evaluating the relative errors of global mass and higher moments between the plume interpolated from a sampling network and that output by the transport model without any interpolation. For the synthetic application examined in this study, the optimal sampling network obtained using NGA achieves a potential cost savings of 45% while keeping the global mass and higher moment estimation errors comparable to those errors obtained using MCSGA. The results of this study indicate that NGA can be used as a useful surrogate of MCSGA for cost-effective sampling network design under uncertainty. Compared with MCSGA, NGA reduces the optimization runtime by a factor of 6.5.  相似文献   

13.
A comprehensive numerical study was undertaken to investigate transport of a variable-density, conservative solute plume in an unconfined coastal aquifer subject to high and low frequency oceanic forcing. The model combined variable-density saturated flow for groundwater and solute transport, and wave hydrodynamics from a 2D Navier–Stokes solver. A sinusoidal tidal signal was specified by implementing time-varying heads at the seaward boundary. The solute plume behavior was investigated under different oceanic forcing conditions: no forcing, waves, tide, and combined waves and tide. For each forcing condition, four different injected solute densities (freshwater, brackish water, seawater, brine) were used to investigate the effects of density on the transport of the injected plume beneath and across the beach face. The plume’s low-order spatial moments were computed, viz., mass, centroid, variance and aspect ratio. The results confirmed that both tide- and wave-forcing produce an upper saline plume beneath the beach face in addition to the classical saltwater wedge. For the no-forcing and tide-only cases (during rising tides), an additional small circulation cell below the beach face was observed. Oceanic forcing affects strongly the solute plume’s flow path, residence time and discharge rate across the beach face, as well as its spreading. For the same oceanic forcing, solute plumes with different densities follow different trajectories from the source to the discharge location (beach face). The residence time and plume spreading increased with plume density. It was concluded that simulations that neglect the effect of waves or tides cannot reproduce accurately solute plume dispersion and also, in the case of coasts with small waves or tides, the solute residence time in the aquifer.  相似文献   

14.
The effect of aquifer heterogeneity on flow and solute transport in two-dimensional isotropic porous media was analyzed using the Monte Carlo method. The two-dimensional logarithmic permeability (ln K) was assumed to be a non-stationary random field with its increments being a truncated fractional Lévy motion (fLm). The permeability fields were generated using the modified successive random additions (SRA) algorithm code SRA3DC [http://www.iamg.org/CGEditor/index.htm]. The velocity and concentration fields were computed respectively for two-dimensional flow and transport with a pulse input using the finite difference codes of MODFLOW 2000 and MT3DMS. Two fLm control parameters, namely the width parameter (C) and the Lévy index (α), were varied systematically to examine their effect on the resulting permeability, flow velocity and concentration fields. We also computed the first- and second-spatial moments, the dilution index, as well as the breakthrough curves at different control planes with the corresponding concentration fields. In addition, the derived breakthrough curves were fitted using the continuous time random walk (CTRW) and the traditional advection-dispersion equation (ADE). Results indicated that larger C and smaller α both led to more heterogeneous permeability and velocity fields. The Lévy-stable distribution of increments in ln K resulted in a Lévy-stable distribution of increments in logarithm of the velocity (ln v). Both larger C and smaller α created sharper leading edges and wider tailing edges of solute plumes. Furthermore, a relatively larger amount of solute still remained in the domain after a relatively longer time transport for smaller α values. The dilution indices were smaller than unity and increased as C increased and α decreased. The solute plume and its second-spatial moments increased as C increased and α decreased, while the first-spatial moments of the solute plume were independent of C and α values. The longitudinal macrodispersivity was scale-dependent and increased as a power law function of time. Increasing C and decreasing α both resulted in an increase in longitudinal macrodispersivity. The transport in such highly heterogeneous media was slightly non-Gaussian with its derived breakthrough curves being slightly better fitted by the CTRW than the ADE, especially in the early arrivals and late-time tails.  相似文献   

15.
Numerical experiments are conducted to examine the effects of gravity on monodisperse and polydisperse colloid transport in water-saturated fractures with uniform aperture. Dense colloids travel in water-saturated fractures by advection and diffusion while subject to the influence of gravity. Colloids are assumed to neither attach onto the fracture walls nor penetrate the rock matrix based on the assumptions that they are inert and their size is larger than the pore size of the surrounding solid matrix. Both the size distribution of a colloid plume and colloid density are shown to be significant factors impacting their transport when gravitational forces are important. A constant-spatial-step particle-tracking code simulates colloid plumes with increasing densities transporting in water-saturated fractures while accounting for three forces acting on each particle: a deterministic advective force due to the Poiseuille flow field within the fracture, a random force caused by Brownian diffusion, and the gravitational force. Integer angles of fracture orientation with respect to the horizontal ranging from ±90° are considered: three lognormally distributed colloid plumes with mean particle size of 1 μm (averaged on a volumetric basis) and standard deviation of 0.6, 1.2 and 1.8 μm are examined. Colloid plumes are assigned densities of 1.25, 1.5, 1.75 and 2.0 g/cm3. The first four spatial moments and the first two temporal moments are estimated as functions of fracture orientation angle and colloid density. Several snapshots of colloid plumes in fractures of different orientations are presented. In all cases, larger particles tend to spread over wider sections of the fracture in the flow direction, but smaller particles can travel faster or slower than larger particles depending on fracture orientation angle.  相似文献   

16.
Solute discharge moments (mean and variance) are computed using numerical modeling of flow and advective transport in two-dimensional heterogeneous aquifers and are compared to theoretical results. The solute discharge quantifies the temporal evolution of the total contaminant mass crossing a certain compliance boundary. In addition to analyzing the solute discharge moments within a classical absolute dispersion framework, we also analyze relative dispersion formulation, whereby plume meandering (deviation from mean flow path caused by velocity variations at scales larger than plume size) is removed. This study addresses some important issues related to the computation of solute discharge moments from random walk particle tracking experiments, and highlights some of the important differences between absolute and relative dispersion frameworks. Relative dispersion formulation produces maximum uncertainty that coincides with the peak mean discharge. Absolute dispersion, however, results in earlier arrival of the uncertainty peak as compared to the first moment peak. Simulations show that the standard deviation of solute discharge in a relative dispersion framework requires increasingly large temporal sampling windows to smooth out some of the large fluctuations in breakthrough curves associated with advective transport. Using smoothing techniques in particle tracking to distribute the particle mass over a volume rather than at a point significantly reduces the noise in the numerical simulations and removes the need to use large temporal windows. Same effect can be obtained by adding a local dispersion process to the particle tracking experiments used to model advective transport. The effect of the temporal sampling window bears some relevance and important consequences for evaluating risk-related parameters. The expected value of peak solute discharge and its standard deviation are very sensitive to this sampling window and so will be the risk distribution relying on such numerical models.  相似文献   

17.
18.
Long-term monitoring solutions at contaminated sites are necessary to track plume migration and evaluate the performance of remediation efforts. Electrical resistivity imaging (ERI) can potentially provide information about plume dynamics; however, the feasibility and likelihood of success are seldom evaluated before conducting a field study. Coupling flow and transport models with geoelectrical models provide a powerful way to assess the potential effectiveness of an actual ERI field campaign. We present a coupled approach for evaluating the feasibility of monitoring nitrate migration and remediation using 4D time-lapse ERI at a legacy nuclear waste facility. This kilometer-scale study focuses on depths below the water table (∼70 m). A flow and transport model is developed to perform simulations of nitrate migration and removal via a hypothetical pump-and-treat system. A tracer injection is also simulated at the leading edge of the nitrate plume to enhance the conductivity contrast between the native subsurface and the groundwater fluids. Images of absolute bulk conductivity provide limited information concerning plume migration while time-lapse difference images, which remove the static effects of geology, provide more useful information concerning plume dynamics over time. A spatial moment analysis performed on flow and transport and ERI models matches well during the tracer injection; however, inversion regularization smoothing otherwise limits the value in terms of locating the center of mass. We find that the addition of a tracer enables ERI to characterize plume dynamics during pump-and-treat operations, and late-time ERI monitoring provides a conservative estimate of nitrate plume boundaries in this synthetic study.  相似文献   

19.
Solute plume spreading in an aquifer exhibits a ‘scale effect’ if the second spatial concentration moment of a plume has a non-constant time-derivative. Stochastic approaches to modeling this scale effect often rely on the critical assumption that ensemble averages can be equated to spatial averages measured in a single field experiment. This ergodicity assumption should properly be evaluated in a strictly dynamical context, and this is done in the present paper. For the important case of trace plume convection by steady groundwater flow in an isotropic, heterogeneous aquifer, ergodicity does not obtain because of the existence of an invariant function on stream surfaces that is not uniform throughout the aquifer. The implications of this result for stochastic models of solute transport are discussed. © 1997 Elsevier Science Ltd. All rights reserved  相似文献   

20.
We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay‐rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay‐rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady‐state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post‐closure safety of a geological disposal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号