首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract A multidisciplinary study was conducted on the section of the Siwalik Group sediments, approximately 5000 m thick, exposed along the Karnali River. Analysis of facies, clay mineralogy and neodymium isotope compositions revealed significant changes in the sedimentary record, allowing discussion of their tectonic or climatic origin. Two major changes within the sedimentary fill were detected: the change from a meandering to a braided river system at ca 9.5 Ma and the change from a deep sandy braided to a shallow sandy braided river system at ca 6.5 Ma. The 9.5‐Ma change in fluvial style is contemporaneous with an abrupt increase of ?Nd(0) values following a ?Nd(0) minimum. This evolution indicates a change in source material and erosion of Lesser Himalayan rocks within the Karnali catchment basin between 13 and 10 Ma. The tectonic activity along the Ramgarh thrust caused this local exhumation. By changing the proximity and morphology of relief, the forward propagation of the basal detachment to the main boundary thrust was responsible for the high gradient and sediment load required for the development of the braided river system. The change from a deep sandy braided to a shallow sandy braided river system at approximately 6.5 Ma was contemporaneous with a change in clay mineralogy towards smectite‐/kaolinite‐dominant assemblages. As no source rock change and no burial effect are detected at that time, the change in clay mineralogy is interpreted as resulting from differences in environmental conditions. The facies analysis shows abruptly and frequently increasing discharges by 6.5 Ma, and could be linked to an increase in seasonality, induced by intensification of the monsoon climate. The major fluvial changes deciphered along the Karnali section have been recognized from central to western Nepal, although they are diachronous. The change in clay mineralogy towards smectite‐/kaolinite‐rich assemblages and the slight decrease of ?Nd(0) have also been detected in the Bengal Fan sedimentary record, showing the extent and importance of the two major events recorded along the Karnali section.  相似文献   

2.
A nonlinear magnitude frequency equation has been derived in this paper on the assumption that all seismicity systems hold fractal characteristics, and according to the differences of relevant coefficients in the equation, seismicity systems are classified into two types: type I, the whole earthquake activity is controlled by only one great unified system; type II, the whole earthquake activity is controlled by more than one great system. One type of seismicity system may convert to the other type, generally. For example, a type I system will change to a type II system prior to the occurrence of a strong earthquake in North China. This change can be regarded as an index for earthquake trend estimation. In addition, the difference between b value in nonlinear magnitude frequency equation and that in linear equation and the term dΔM related to the coefficients of nonlinear terms obtained in this paper are proved to be a pair of available parameters for medium short term earthquake prediction.  相似文献   

3.
Abstract

A study of the effect of changes in climate on aquifer storage and river recharge using a simple model of an idealized aquifer/river system shows the combined influence of aquifer properties and climate change scenario on the system response. The study shows that changes in the seasonal distribution of recharge may have a critical effect on low flows in rivers supported by baseflow. However, rivers supported by slowly responding aquifers may show a considerable delay in response to climate change allowing an opportunity for water resources planning over an extended period.  相似文献   

4.
5.
The interaction of geomechanics and flow within a soil body induces deformation and pore pressure change. Deformation may change hydrogeological and elastic properties, which alters the mechanical behaviour and results in non‐linearity. To investigate this interaction effect in a heterogeneous porous medium, a stochastic poroelastic model is proposed. Monte Carlo simulations are performed to determine the mean and uncertainty of the parameter changes, displacement, and change in pore water pressure. Hydraulic conductivity is treated as the only random variable in the coupled geomechanics‐flow system due to its large variation compared to other mechanical and hydrogeological properties in natural environments. The three considered non‐linear models for the interaction between parameters and deformation are those that consider (1) porosity and hydraulic conductivity; (2) porosity and Young's modulus; and (3) a combined effect that includes porosity, hydraulic conductivity, and Young's modulus. Boundary effects on the coupled system are also explored. The relationships between changes of porosity, hydraulic conductivity, and Young's modulus are analytically shown to be non‐linear. Among the considered parameters, the deformation effect induces the largest reduction in hydraulic conductivity. The deformation‐induced change in hydraulic conductivity shows the most significant effect on the mean and variance of the change in pore water pressure and displacement, while changes in Young's modulus have the least effect. When the deformation effect is considered, the superposition relationship does not exist in the mean displacement and mean change in pore water pressure for the three scenarios considered; it exists for the case without deformation effects. Deformation also causes a reduction in the effective hydraulic conductivity for the whole domain. The scenario that considers both loading and discharge boundaries has larger changes in hydrogeological and geo‐mechanical parameters than those in scenarios that consider loading and discharge boundaries separately. The results indicate that the interaction between deformation and changes in parameters has a profound effect on the poroelastic system. The effect of deformation should thus be considered in modelling and practice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

With the rapid economic development and urbanization in Taihu Basin (eastern China), the river system has decayed and the connectivity of rivers and lakes has weakened, resulting in frequent floods. The impact of changes in river system structure on hydrological processes in the plain river network area was analysed against a background of urbanization. An indicator system was built to describe the quantitative, morphological and spatial structure of the river system. Analysis of the change in annual average and extreme water levels revealed the influencing mechanism of the changes in river system structure on the hydrological processes. The results indicate a decreasing tendency in the density of the river system in the study area, with a reduction in water surface ratio by about 20% in the past 50 years. Since the 1960s, the maximum and annual average water levels have increased. The degree of change in the mean monthly, annual lowest and annual highest water levels was great, with that in the non-flood season being higher than in the flood season. The decrease in the number of rivers directly reduced the storage and adjustable capacity of the basin.  相似文献   

7.
Floods and debris flows in small Alpine torrent catchments (<10 km2) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude–frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Längentalbach catchment) were investigated by both field experiments and process‐based simulation. Rainfall–runoff model (HQsim) runs driven by localized climate scenarios (CNRM‐RM4.5/ARPEGE, MPI‐REMO/ECHAM5 and ICTP‐RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature‐controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high‐altitude catchment is less sensitive to climate change‐induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation‐related small proportion of sensitive areas. For the period 2071–2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60% or even less in summer in all catchments. In contrast, the number of days with dried‐out litter layers causing hydrophobic effects will increase by up to 8%–11% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10%.  相似文献   

8.
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local Ms5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.  相似文献   

9.
By incorporating the knowledge of the observed high-pressure phase transformations, the measured equilibrium phase boundaries for certain transitions, and the measured thermochemical data for certain phases in the system MgOSiO2, the equilibrium phase boundaries for all the phase transitions in this system at 1000°C have been calculated on the basis of an assumption that volume change across a phase boundary is independent of temperature. Three major seismic velocity discontinuities in the mantle (420, 570, and 650 km) have been chosen for comparison with the measured and calculated equilibrium phase boundaries for the high-pressure phases observed in the system MgOSiO2. Complications of phase changes due to the addition of FeO and Al2O3 to the system have also been accounted for. It is suggested by the results of this study that the 420- and 570-km discontinuities are probably related to phase transitions observed in the system MgOSiO2, but that the 650-km discontinuity is not likely to be associated with any of the equilibrium phase boundaries observed in olivine, pyroxene, and garnet, but may instead be a chemical change.  相似文献   

10.
海平面变化是全球气候系统变化的一个组成部分,是环境变化的重要指标,也会影响沿海区域及岛屿的生态环境甚至存亡.全球海平面变化由海水质量变化和比容海平面变化构成.海水质量变化主要是由于两极冰盖和高山区的冰川融化流入海洋所致;比容海平面变化是由海水的温度和盐度变化所引起的,其中温度变化是最主要的因素.本文介绍了海平面变化各种监测技术的发展过程,并对海平面变化的研究现状进行了总结.所有研究成果均表明,近100多年以来,全球海平面一直处于上升态势;近几十年以来,海平面呈现加快上升并且越来越快的趋势.目前仍然存在一些问题:人们还没有完全掌握海平面变化规律,对未来海平面变化预测有较大不确定性;深海缺乏实测数据;厄尔尼诺—南方涛动(ENSO)的变化规律以及对海平面的影响;GRACE陆地与海洋信号无法完全分离以及GRACE与GRACE-FO之间的一致性分析等.这些问题都需要进一步开展研究.  相似文献   

11.
地下水位前兆敏感水力学条件的数值模拟研究   总被引:8,自引:2,他引:6       下载免费PDF全文
根据弹性孔隙理论,利用数值分析的方法,研究了承压含水层对井水位的映震效果的影响,模拟结果显示:含水层系统的封闭状态对水位的映震效果有很大的影响,侧漏的大小和水头的高低会直接影响水位的观测效果,在系统封闭很好的情况下,观测水位的变化基本与水头的变化呈线性关系,此外,含水层系统的渗透性也是影响水位变化的重要条件之一,渗透性好则水位的映震效果明显。  相似文献   

12.
The most important geomorphic responses to storms are qualitative changes in system state. Minor storms produce no state change or very rapid recovery to pre‐storm state, and extinction events wipe out the system. In other cases disturbance results in a state change, which may be transitional (change to a previously existing state), state space expansion (change to a new state), and clock‐resetting events that return the system to its initial state. Recovery pathways are much more varied than the monotonic progressions represented in classic vegetation succession and linear channel evolution models. Those linear sequential pathways are only one of several archetypal recovery pathways, which also include binary, convergent, divergent, and more complex networks. Filter‐dominated systems are more likely to follow linear sequential or convergent patterns, whereas amplifier‐dominance is characteristic of divergent and more complex mesh or fully‐connected patterns. Amplifier domination is also more likely to lead to evolutionary or state space expansion responses. Amplification and filtering in geomorphic response and recovery can be assessed using the 'Four R's' framework of response, resistance, relaxation, and recursion. High resistance and resilience, rapid relaxation times, and stable recursive feedback networks reduce or offset effects of disturbances, thus filtering their impacts. Conversely, low resistance and resilience, slow relaxation, and dynamically unstable feedbacks can exaggerate disturbances, creating disproportionately large and long‐lived impacts, thereby amplifying disturbances. Unless new filter mechanisms evolve (either autogenically or anthropically), or the number of extinction or clock‐resetting events increases, intensified storminess will result in more geomorphic variability. These ideas are applied to a case study of a flood on the Clark Fork River, Montana, USA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Summary The problem of expressing analytically the magnetic torque, acting on the electrically conducting part of the Earth's mantle, is treated as a function of the system of convection on the surface of the core. The changes of velocities in the system of convection are estimated for decadic changes of the Earth's rotation and for the perturbation of the Earth's rotation in 1897. As regards the decadic changes of the Earth's rotation a change of velocity in the system of convection at the surface of the core of the order of 10–4 m/s corresponds, and as regards the perturbation of the Earth's rotation in 1897 (10–3 s/year) a change of velocity of 10–3 m/s reduced to the whole surface of the core corresponds, and 10–2 m/s corresponds for the region of the focus of the world geomagnetic anomaly (dimension of this region is 106 m).  相似文献   

14.
航空电磁系统的收发线圈受外界因素影响会发生姿态变化,使测量结果产生一定偏差.传统的数据处理方法考虑姿态变化情况单一,且主要以频率域系统为主,而目前复杂姿态变化对时间域航空电磁系统全时响应的影响尚未有系统研究.本文在前人研究基础上拓宽思路,不仅研究姿态的角度变化,同时改进前人计算方法,研究线圈发生位置变化的影响,并将线圈与大地的耦合感应效应考虑在内.本文通过定义姿态变化前后两种坐标系,确定姿态变化的角度和旋转矩阵,并将一维层状半解析解与姿态角度变化和位置变化进行整合,推导出收发线圈任意姿态变化的表达式.以直升机吊舱分离装置为例,对时间域航空电磁系统收发线圈任意姿态变化进行细致分析.基于重叠偶极子的假设,给出可应用于实际工作中的姿态校正因子,以提高实测数据的处理效率与精度.  相似文献   

15.
A methodology is developed to examine the susceptibility of a transport system to rainfall‐induced landslides and is demonstrated for part of the UK rail network with regard to the potential changes that might occur with climate change. A mathematical model is given for the system failure and a statistical model is formulated for the joint distribution of rainfall at different points along the railway line. These are used to investigate the response of earth embankments along the railway line to current and future climate scenarios, including the effects of rainfall and evapotranspiration on slope hydrology and stability. It is shown that, for the system of clay embankments in question, the moisture profile through the embankment at the end of the summer months has a critical effect on system stability, both in terms of expected failure timing and probability of failure. Further, it is seen that, with changing climate, the system stability is likely to increase unless the degradation of embankment material properties, another potential effect of changed climate, is taken into account. The spatial distribution of failures is also likely to change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
秦佩  梁连仲  陶照明  黄涛  刘雨 《地球物理学报》2019,62(10):3665-3674
高精度数字重力仪广泛应用于矿产资源勘探领域,由石英弹性系统组成的重力传感器是高精度数字重力仪的核心部件,其对外界环境温度非常敏感,由环境温度变化引起的重力输出变化远远大于仪器本身精度指标,而且不同的数字重力仪具有不同的温度影响特性.若重力传感器的恒温环境得不到保障,或环境温度的微弱变化无法得到准确的测量和补偿,将严重影响重力仪器的测量精度和一致性.本文针对该问题,研究了高精度恒温测温系统的设计方法及关键技术,考虑到数字重力仪器精度高、体积小、功耗低和便携式的特点,对高精度恒温测温系统中的关键器件选型、热结构设计、电路设计、软件设计等进行深入研究,并给出具体的解决措施.并设计了静态试验、高低温试验和石英弹性系统温度系数测定试验三个部分验证高精度恒温测温系统的有效性.试验结果表明:高精度测温系统最小分辨率达到10 μ℃;静态常温时,高精度恒温系统温度变化约为70 μ℃;在-20℃~+45℃的环境温度冲击中高精度恒温系统温度变化小于1 m℃;恒温点微调装置可实现石英弹性系统温度系数的精确测定.该研究为高精度重力测量仪器研制中消除环境温度变化影响提供了一种有效解决方案.  相似文献   

17.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
井水温度微动态形成的水动力学机制研究   总被引:27,自引:4,他引:27  
井水温度微动态观测越来越受到有关学者的关注,已成为我国地震地下流体动态观测的主测项之一。观测结果表明,无论是水温的正常动态还是震前的异常动态的形成,用传统的热传导或热对流机制难以给出合理解释。因此笔者根据观测到的事实、异常特征与同震效应等提出了水动力学机制,即含水层变形→含水层内孔隙压力变化→井-含水层系统内水流变化→井水温度的变化。  相似文献   

19.
Deep saline aquifers are commonly used for disposal and storage of various surface fluids. The target injection zone must be hydraulically isolated from overlying zones in order to ensure containment of the injected fluids. Improperly plugged nonoperational abandoned wells that penetrate the injection zone are the main potential leakage pathways. Leakage through such wells may cause an observable pressure signal in a zone overlying the injection zone; such a signal can be used to detect the leakage. In this paper we develop an analytical model to evaluate the pressure change induced by leakage through a well in a multilayer system. Unlike previous analytical models on the topic, our model uses a closed system, which may significantly affect the strength and behavior of the pressure signal induced by leakage. The analytical model is first presented for a two-layer system centered at the leaky well location. We evaluate the leakage-induced pressure change using the Laplace transform of Duhamel’s superposition integral, yielding the solution in the Laplace domain. We then derive a late-time asymptotic solution using the final value theorem, which suggests that the leakage rate becomes constant after sufficient time. We then obtain the multilayer solution by extending the two-layer solution and presenting it in matrix form in the Laplace domain. We apply the solution to three examples. In the first example, we apply the analytical model to a two-layer system, investigating its behavior and comparing the results with a numerical solution. In order to demonstrate behavior and potential applications of the multilayer analytical model, we present two multilayer examples: one with identical layers and another, replicating a CO2 storage site, with dissimilar layers. The leakage-induced pressure change does not necessarily decrease as the distance increases from the injection zone toward the surface.  相似文献   

20.
This paper introduces the process of development and practical use implementation of an advanced river management system for supporting integrated water resources management practices in Asian river basins under the framework of GEOSS Asia water cycle initiative (AWCI). The system is based on integration of data from earth observation satellites and in-situ networks with other types of data, including numerical weather prediction model outputs, climate model outputs, geographical information, and socio-economic data. The system builds on the water and energy budget distributed hydrological model (WEB-DHM) that was adapted for specific conditions of studied basins, in particular snow and glacier phenomena and equipped with other functions such as dam operation optimization scheme and a set of tools for climate change impact assessment to be able to generate relevant information for policy and decision makers. In situ data were archived for 18 selected basins at the data integration and analysis system of Japan (DIAS) and demonstration projects were carried out showing potential of the new system. It included climate change impact assessment on hydrological regimes, which is presently a critical step for sound management decisions. Results of such three case studies in Pakistan, Philippines, and Vietnam are provided here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号