首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solute transport experiments using a non-reactive tracer were conducted on short, undisturbed, saturated columns of a sandy loam soil. All columns, 20 cm in diameter and 20 cm long, were collected along a transect of 35 m. Most of the soil columns had pre-existing macropores. The columns were leached at a steady flow-rate under ponding conditions. The resulting breakthrough curves (BTCs) showed a large heterogeneity. Several of the BTCs displayed early breakthrough and long tailing. All the data were interpreted in terms of dimensional time moments, the classical convection-dispersion equation (CDE) and the mobile-immobile transport model (MIM). Experimental time moments were found to vary significantly among the different BTCs. Analysis of the time moments also revealed that the variance of the field-scale BTC was several times larger than the average of the local-scale variance. The pore water velocity v and dispersion coefficient D were obtained by fitting the CDE to the local-scale BTCs, resulting in an average dispersivity of 7·4 cm. Frequency distributions for the CDE parameters v and D were equally well described by a normal or log-normal probability density function (pdf). When a log-normal pdf for D is considered, the variance of the loge transformed D values (σln D2) was found to be 2·1. For the MIM model, two additional parameters were fitted: the fraction of mobile water, θm/θ, and the first-order mass transfer coefficient, α. The MIM was more successful in describing the data than the CDE transport model. For the MIM model, the average dispersivity was about 2 cm. The MIM parameters v, D and θm/θ were best described by a log-normal pdf rather than a normal pdf. Only the parameter α was better described by a normal pdf. Mobile water fractions, θm/θ ranged from 0·01 to 0·98, with a mean of 0·43 (based on a log-normal pdf). When the CDE and MIM were applied to the data, the fitted pore water velocities, v, compared favourably with the effective pore water velocities, veff, obtained from moment analysis.  相似文献   

2.
Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain.  相似文献   

3.
This paper reports a radiofrequency identification (RFID) tracing experiment implemented in a high‐sediment‐load mountain stream typical of alpine gravel‐bed torrents. The study site is the Bouinenc Torrent, a tributary to the Bléone River in southeast France that drains a 38·9‐km² degraded catchment. In spring 2008, we deployed 451 tracers with b‐axis ranging from 23 to 520 mm. Tracers were seeded along eight cross‐sections located in the upstream part of the lowest 2·3 km of the stream. Three tracer inventories were implemented in July 2008, 2009 and 2010. Recovery rates calculated for mobile tracers declined from 78% in 2008 to 45% in 2009 and 25% in 2010. Observations of tracer displacement revealed very high sediment dispersion, with frontrunners having travelled more than 2 km only three months after their deployment. The declining recovery rate over time was interpreted as resulting from rapid dispersion rather than deep burial. We evaluated that 64% of the tracers deployed in the active channel were exported from the 2·3‐km study reach three years after the onset of the tracing experiment. Travel distances were characterized by right‐skewed and heavy‐tailed distributions, correctly fitted by a power‐law function. This supports the idea that in gravel‐bed rivers with abundant sediment supply relative to transport capacity, bedload transport can be viewed as a superdiffusive sediment dispersion process. It is also shown that tracers initially deployed in the low‐flow channel were characterized by a 15‐ to 30‐fold increase of mobility compared to tracers deployed in gravel bars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Sustainable urban drainage systems are built along roads and in urban areas to collect urban runoff and avoid flooding, and to filter water pollutants. Sediment collected by runoff is deposited in the stormwater basin and progressively reduces water infiltration efficiency, leading to the clogging of the basin. To help stormwater basin managers and stakeholders better understand and predict clogging rates in order to elaborate maintenance plans and schedules, water transport prediction models are necessary. However,because of the heterogeneous sediment hydrodynamic properties inside the stormwater basin, a twodimensional(2-D) water flow model is required to predict water levels and possible overflow as accurately as possible. Saturated hydraulic conductivity(Ks) and sediment water retention curves were measured in the overall sediment layer of the stormwater basin, in addition to sediment layer thickness and organic matter content(11 sampling points). Sediment depth was used to predict organic matter(OM) content, and the OM was used to predict Ks. Water height in the basin was modeled with the HYDRUS-2 D model by taking into account the sediment hydrodynamic properties distribution. The HYDRUS-2 D model gave a satisfactory representation of the measured data. Scenarios of the hydraulic properties of stormwater basin sediment were tested over time, and hydraulic resistance, R, was calculated to assess the stormwater basin performance. Presently, after 20 years of functioning, the stormwater basin still ensures efficient water infiltration, but the first outflow(Hydraulic resistance,R 24 h)) is expected to appear in the next 5 years, and clogging(R 47 h) in the next 13 years. This 2-D water balance model makes it possible to integrate the hydrodynamic heterogeneity of a stormwater basin. It gives interesting perspectives to better predict 2-D/3-D contaminant transport.  相似文献   

5.
6.
Changes in bed topography that build and maintain channel morphology are driven by the displacements of individual particles, either though their entrainment or deposition. However, the linkages between these topographic changes and individual grain displacements have not been comprehensively addressed, as many historical tracer studies have not included coincident topographic data. In this study, we compare the movements of bedload tracers to the differences in repeat topographic surveys across four gravel-bed river reaches. To do this, we apply a 1-D Bayesian survival process model to the starting and ending locations of tracers. This model estimates downstream trapping probabilities, which represent the likelihood that a given segment of channel will “trap” an entrained particle. We then adapt this model to estimate downstream trapping probabilities using digital elevation models of difference and compare the results. The estimates from the tracer and topographic trapping models showed general alignment, meaning that tracers were preferentially trapped in segments that experienced deposition along the channel. Thus, tracers in this study were able to identify downstream differences in bedload transport. The comparison also highlighted that tracer-estimated trapping probabilities were larger than topographically estimated ones. This supports previous observations that sediment travel distances estimated using tracers are shorter than those estimated using morphological methods. We find that the differences between these two estimates vary systematically across study environments. These variations are attributable to either study design (i.e., tracers being larger than the median size of the sediment that deforms the bed) or differences in compensating scour and fill. We explore potential causes for differences in compensating scour and fill, including hydrograph shape, sediment delivery regime, channel deformation style, and channel width, highlighting that morphodynamics needs to be considered in designing bedload tracer studies.  相似文献   

7.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

8.
Data from tracer experiments were compiled and analysed in order to explore the role of geomorphological, hydrological and sedimentological constraints on fluvial gravel transport in gravel-bed rivers. A large data set from 217 transport episodes of tagged stones were compiled from 33 scientific papers. Our analyses showed that while magnitude of peak discharge is a major control on gravel transport and mobility, tracer travel distances show some scale dependence on the morphological configuration of the channel. Our results also highlight differences in the way tracers are displaced between step–pool and riffle and pool channels. The riffle–pool sequence seems to be a more efficient trap for travelling gravels than the step–pool pair. In addition, in step–pool channels there are clear differences in tracer transport between observations of first displacements after tracer seeding (unconstrained-stone conditions), and second and subsequent observations of tracer displacements (constrained-stone conditions). The comparison between tracer experiments under constrained conditions and those under unconstrained conditions also highlights the importance of bed state and structures in gravel mobility. The results of this study confirm that sediment transport in gravel-bed rivers is a complex process, whereby sedimentological and geomorphological controls are superimposed on the hydraulic forcing. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.  相似文献   

10.
Solute transport through structured, undisturbed soil has been studied in transient, unsaturated experiments using columns from grass and woodland sites on the Lancaster University campus. Three anionic tracers have been used, bromide (Br) and two fluorinated organic acids (pentraflurobenzoic acid and 2,6-diflurobenzoic acid). The process of displacement of stored water from undisturbed columns was investigated using successive inputs of different tracers under similar antecedent conditions. The results indicated that initial breakthrough was rapid, with a relative concentration of 0.8 being reached between 0.4 and 0.5 pore volumes of discharge. It was found that there was an apparent continued discharge of ‘old’ water, stored in the column before any additions of tracer, even after the addition of a total of 4.9 and 5.4 pore volumes of water for the grass and woodland columns, respectively. The implications of the results of these tracer studies for modelling solute transport in structured soils are considered.  相似文献   

11.
Modelling pollutant transport in water is one of the core tasks of computational hydrology, and various physical models including especially the widely used nonlocal transport models have been developed and applied in the last three decades. No studies, however, have been conducted to systematically assess the applicability, limitations and improvement of these nonlocal transport models. To fill this knowledge gap, this study reviewed, tested and improved the state-of-the-art nonlocal transport models, including their physical background, mathematical formula and especially the capability to quantify conservative tracers moving in one-dimensional sand columns, which represents perhaps the simplest real-world application. Applications showed that, surprisingly, neither the popular time-nonlocal transport models (including the multi-rate mass transfer model, the continuous time random walk framework and the time fractional advection-dispersion equation), nor the spatiotemporally nonlocal transport model (ST-fADE) can accurately fit passive tracers moving through a 15-m-long heterogeneous sand column documented in literature, if a constant dispersion coefficient or dispersivity is used. This is because pollutant transport in heterogeneous media can be scale-dependent (represented by a dispersion coefficient or dispersivity increasing with spatiotemporal scales), non-Fickian (where plume variance increases nonlinearly in time) and/or pre-asymptotic (with transition between non-Fickian and Fickian transport). These different properties cannot be simultaneously and accurately modelled by any of the transport models reviewed by this study. To bypass this limitation, five possible corrections were proposed, and two of them were tested successfully, including a time fractional and space Hausdorff fractal model which minimizes the scale-dependency of the dispersion coefficient in the non-Euclidean space, and a two-region time fractional advection-dispersion equation which accounts for the spatial mixing of solute particles from different mobile domains. Therefore, more efforts are still needed to accurately model transport in non-ideal porous media, and the five model corrections proposed by this study may shed light on these indispensable modelling efforts.  相似文献   

12.
Radio-frequency identification (RFID) transponders are now widely used to track sediment in a variety of environments. A recent innovation placed the transponder inside of a rotating inner mechanism that is designed to minimize missed detections due to burial and shielding or ‘signal collision’ effects between tracers, while also allowing a rapid measurement of the burial depth of the particle. Here we test a developed protocol for burial depth measurement and deploy the ‘Wobblestone’ tracers in the field for the first time. Results show that new tracers can be reliably positioned in the horizontal plane (median error ± 0.03 m) and that the burial depth can be accurately measured (~0.02 m maximum error). The field study was characterized by high mobility and travel lengths, and ~20% of the tracers were buried at depths up to 0.15 m. A comparison of exponential distributions for travel length of surface deposited and buried tracers indicate that the buried tracers on average traveled farther and earlier in the flood event. Tracers that did not move were also buried at one site as a result of sediment transport from upstream. Overall the technique has great potential for characterizing vertical mixing and understanding this rarely considered control on sediment transport. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Two-dimensional, vertically-averaged hydrodynamic and sediment transport models were developed and applied as part of a PCB fate and transport modeling study of Thompson Island Pool (TIP), Upper Hudson River. Mechanistic formulations were used to simulate cohesive and non-cohesive suspended load transport; site-specific data were extensively used to determine model inputs. This modeling approach is compared and contrasted to non-mechanistic solids transport sub-models used in other contaminant fate studies. A minimum number of model parameters were adjusted to calibrate the sediment transport model using data collected during the 1994 spring flood. The model was validated during the 1997 spring flood and for a 22-year (1977–1998) period. Successful calibration and validation of the model showed that: (1) deposition and resuspension processes were realistically and accurately formulated in the model; (2) the model is an effective diagnostic tool for quantitatively evaluating net deposition and erosion from various areas of TIP; and (3) sediment transport results can be coupled with a PCB fate model with a high degree of confidence.  相似文献   

14.
Solute transport in subsurface environments is controlled by geological heterogeneity over multiple scales. In reactive transport characterized by a low Damköhler number, it is also controlled by the rate of kinetic mass transfer. A theory for addressing the impact of sedimentary texture on the transport of kinetically sorbing solutes in heterogeneous porous formations is derived using the Lagrangian-based stochastic methodology. The resulting model represents the hierarchical organization of sedimentary textures and associated modes of log conductivity (K) for sedimentary units through a hierarchical Markov Chain. The model characterizes kinetic sorption using a spatially uniform linear reversible rate expression. Our main interest is to investigate the effect of sorption kinetics relative to the effects of K heterogeneity on the dispersion of a reactive plume. We study the contribution of each scale of stratal architecture to the dispersion of kinetically sorbing solutes in the case of a low Damköhler number. Examples are used to demonstrate the time evolution and relative contributions of the auto- and cross-transition probability terms to dispersion. Our analysis is focused on the model sensitivity to the parameters defined at each hierarchical level (scale) including the integral scales of K spatial correlation, the anisotropy ratio, the indicator correlation scales, and the contrast in mean K between facies defined at different scales. The results show that the anisotropy ratio and integral scales of K have negligible effect upon the longitudinal dispersion of sorbing solutes. Furthermore, dispersion of sorbing solutes depends mostly on indicator correlation scales, and the contrast of the mean conductivity between units at different scales.  相似文献   

15.
We consider an Eulerian–Lagrangian localized adjoint method (ELLAM) applied to nonlinear model equations governing solute transport and sorption in porous media. Solute transport in the aqueous phase is modeled by standard advection and hydrodynamic dispersion processes, while sorption is modeled with a nonlinear local-equilibrium model. We present our implementation of finite volume ELLAM (FV-ELLAM) and finite element (FE-ELLAM) discretizations to the reactive transport model and evaluate their performance for several test problems containing self-sharpening fronts.  相似文献   

16.
Tracers provide one of the few ways of obtaining realistic information on the flows of water and solutes in undisturbed structured soils. Three fluorinated organic acids [pentafluorobenzoic acid, 2,6-diflurobenzoic acid and o-(trifluoromethyl) benzoic acid] and bromide were tested as anionic tracers in situations where the separation of different flow components is of interest. The fluorobenzoates were relatively conservative (approximately 90% for loam soil) although, in some instances, co-elution or complexation may lead to apparently non-conservative behaviour. Tracer mixtures applied to soils, were separated and quantified by high-performance liquid chromatography. The relative mobilities of the tracers were studied during unidirectional steady flow in large undisturbed soil columns brought back to the laboratory. The breakthrough curves showed highly dispersive behaviour, with very early breakthrough of solute and a long tail. Contributions to the column outflow of different simultaneous applications of rainfall and return flow, labelled with different tracers, were separated using multicomponent mixing equations. The results show the importance of preferential flow and relatively immobile storage in the transport process.  相似文献   

17.
Abstract

Two multi-tracer tests were performed in fissured rocks accessible in underground laboratories to examine a new fluorescent dye: pyrene-1,3,6,8-tetra sulphonic acid (PTS). The first test was carried out at the Lindau Rock Laboratory (LRL), Germany, in a highly permeable ore dike, and the second, at the Grimsel Test Site (GTS), Switzerland, in a heterogeneous granite fault zone (AU 126). At the LRL new tracer was injected together with uranine in a convergent flow field (monopole test), and slightly different tracer breakthrough curves were observed according to different diffusion coefficients of both tracers. The matrix porosity calculated with the aid of the one-dimensional (1-D) single-fissure dispersion model (SFDM) agrees well with that found in earlier tracer tests and with measurements performed on core samples. At the GTS, the PTS tracer was applied together with pyranine in two-well injection–withdrawal (dipole) tests. Both tracers yielded identical tracer concentration curves, which confirm their conservative behaviour. Mathematical simulations performed with the aid of a 3-D numerical model (FRAC3DVS) yielded equally good fits for different sets of parameters, independent of whether matrix porosity was included or neglected. That lack of unique solution and the difficulty in observing the influence of matrix diffusion result from a wide distribution of the transit times of particular streamlines, which is characteristic for injection–withdrawal tests. However, both tracer tests clearly indicated that the new tracer (PTS) behaves conservatively at high pH values and can be successfully used for groundwater labelling.  相似文献   

18.
Stream–subsurface exchange strongly influences the transport of contaminants, fine particles, and other ecologically relevant substances in streams. We used a recirculating laboratory flume (220 cm long and 20 cm wide) to study the effects of particle size, overlying velocity, and biofilm formation on stream–subsurface exchange of particles. Sodium chloride was used as a non‐reactive dissolved tracer and 1‐ and 5‐µm fluorescent microspheres were used as particulate tracers. Surface–subsurface exchange was observed with a clean sand bed and a bed colonized by an autotrophic–heterotrophic biofilm under two different overlying velocities, 0·9 and 5 cm s?1. Hydrodynamic interactions between the overlying flow and sand bed resulted in a reduction of solute and particle concentrations in the water column, and a corresponding accumulation of particles in both the sediments and in the biofilm. Increasing overlying velocity and particle size resulted in faster removal from the overlying water due to enhanced mass transfer to the bed. The presence of the biofilm did not affect solute exchange under any flow condition tested. The presence of the biofilm significantly increased the deposition of particles under an overlying velocity of 5 cm s?1, and produced a small but statistically insignificant increase at 0·9 cm?1. The particles preferentially deposited within the biofilm matrix relative to the underlying sand. These results demonstrate that hydrodynamic transport conditions, particle size, and biofilm formation play a key role in the transport of suspended particles, such as inorganic sediments, particulate organic matter, and pathogenic microorganisms in freshwater ecosystems, and should be taken into consideration when predicting the fate and transport of particles and contaminants in the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Qinhong Hu  Jean E. Moran 《水文研究》2005,19(14):2671-2687
An analytical method that employs ion chromatography has been developed to exploit the use of fluorobenzoic acids (FBAs) and halides more fully as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g. nitrate and sulphate). The usefulness of this analytical method is demonstrated in both field and laboratory tracer experiments. The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the USA—mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need—reveal several insights about tracer transport behaviour: (1) bromide and FBAs are not always transported conservatively; (2) the delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy; (3) use of iodine as a hydrologic tracer should take into account the different sorption behaviours of iodide and iodate and the possible conversion of iodine's initial chemical form; (4) the transport behaviour of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large‐scale field tracer experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号