首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U–Pb and Lu–Hf data on TTG (tonalite–trondhjemite–granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450–1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from −11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120–130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from −30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.  相似文献   

2.
The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of the western NCC and Alxa Block and on the timing of their amalgamation.In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (− 8.6 to − 5.3) values, high whole-rock εNd(t) values (− 9.2 to − 7.6) and highly radiogenic Pb isotopes (206Pb/204Pb = 18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O (5.7–7.2‰) and εHf(t) (− 23.1 to − 7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and εNd(t) (− 19.1 to − 13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and records the amalgamation of the Alxa Block and North China Craton. Together with detrital zircon data, the initial collision was considered to have possibly occurred in Late Ordovician.  相似文献   

3.
The NW–SE trending Longshoushan is in the southwestern margin of the Alxa Block, which was traditionally considered the westernmost part of the North China Craton (NCC). Precambrian crystalline basement exposed in the Longshoushan area was termed the “Longshoushan Complex”. This complex's formation and metamorphism are significant to understand the geotectonics and early Precambrian crustal evolution of the western NCC. In this study, field geology, petrology, and zircon U–Pb and Lu–Hf isotopes of representative orthogneisses and paragneisses in the Longshoushan Complex were investigated. U–Pb datings reveal three Paleoproterozoic magmatic episodes (ca. 2.33, ca. 2.17 and ca. 2.04 Ga) and two subsequent regional metamorphic events (ca. 1.95–1.90 Ga and ca. 1.85 Ga) for metamorphic granitic rocks in the Longshoushan Complex. U–Pb dating of the detrital magmatic zircons from two paragneisses yields concordant 207Pb/206Pb ages between 2.2 Ga and 2.0 Ga, and a small number of metamorphic zircon rims provide a ca. 1.95 Ga metamorphic age, suggesting that the depositional time of the protolith was between 2.0 and 1.95 Ga and that the sedimentary detritus was most likely derived from the granitic rocks in the Longshoushan Complex itself. Zircon Lu–Hf isotopic analyses indicate that nearly all magmatic zircons from ca. 2.0 Ga to ca. 2.17 Ga orthogneisses have positive εHf(t) values with two-stage Hf model ages (TDMC) ranging from 2.45 to 2.65 Ga (peak at ca. 2.5 Ga), indicating that these Paleoproterozoic granitic rocks were derived from the reworking of the latest Neoarchean–early Paleoproterozoic juvenile crust. Detrital magmatic zircons from two paragneisses yield scattered 176Hf/177Hf ratios, εHf(t) and TDMC values, further indicating that the sedimentary detritus was not only derived from these plutonic rocks but also from other unreported or denuded Paleoproterozoic igneous rocks. The ca. 2.15 Ga detrital magmatic zircons from one paragneiss have negative εHf(t) values with TDMC ranging from 2.76 to 3.04 Ga, indicating another important crustal growth period in the Longshoushan region. These data indicate that the Longshoushan Complex experienced Neoarchean–Early Paleoproterozoic crustal growth, approximately ca. 2.3–2.0 Ga experienced multiphase magmatic events, and approximately ca. 1.95–1.90 Ga and ca. 1.85 Ga experienced high-grade metamorphic events. The sequence of tectonothermal events is notably similar to that of the main NCC. Together with the datasets from an adjacent area, we suggest that the western Alxa Block was most likely an integrated component of the NCC from the Neoarchean to the Paleoproterozoic.  相似文献   

4.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   

5.
The North China Craton (NCC) provides a classic example of lithospheric destruction and refertilization. The timing and duration of magmatism and related metallogenesis associated with the destruction process are pivotal to understanding the geodynamic controls. In this study, we present zircon U–Pb and Hf data, Re–Os ages, and He, Ar, Pb and S isotope data from the Mujicun porphyry Cu–Mo deposit in the northern Taihang Mountains within the Central Orogenic Belt of the NCC. We constrain the timing of magmatism as 144.1 ± 1.2 Ma from zircon U–Pb data on the diorite porphyry that hosts Cu–Mo mineralization. Another U–Pb age of 139.7 ± 1.4 Ma was obtained from an epidote skarn that is located in the contact zone between the porphyry and its wall rocks. These data and five Re–Os molybdenite ages that range from 142.7 ± 2.0 Ma to 138.5 ± 1.9 Ma suggest that magmatism and mineralization occurred in about five million year duration from ~ 143 Ma to ~ 138 Ma. The He, Ar, Pb and, Hf data suggest that magmatism involved recycled Neoarchean lower crustal components, with input of heat and volatiles from an upwelling mantle. The Mujicun porphyry and associated mineralization provide a typical example for magmatism and metallogeny associated with lithospheric thinning in the NCC.  相似文献   

6.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

7.
Chronological, geochemical and Sr–Nd–Pb isotopic analyses have been carried out on the Mesozoic plutons in western Shandong with the aim of characterizing crustal–mantle evolution during the tectono-thermal reactivation of the craton. Detailed SHRIMP zircon U–Pb dating reveals two main periods of Mesozoic activity with contrasting compositions. The older magmatic pulse is manifested by monzonites and monzodiorites from Tongshi for which zircon rims yield a concordant age of 177±4 Ma and the cores have a discordant age of ca. 2.5 Ga. Low MgO and Cr, high Na2O contents and especially their isotopic compositions (87Sr/86Sr < 0.7042, 206Pb/204Pb < 16.8 and Nd ~ –12) are consistent with derivation from late Archean–Paleoproterozoic lower crust. Relatively high HREE contents in these Jurassic plutons indicate a garnet-free source (<32 km), in contrast to the garnet-bearing source (>40 km) of the late Mesozoic high Sr and low Y granitoids from the same region. Distinctively different depths of crustal melting suggest dynamic thickening of the crust by magmatic underplating during the Jurassic and Cretaceous. The younger dioritic plutons from Laiwu and Yinan were emplaced at 132–126 Ma and show relatively high MgO and Cr contents and large isotopic variability. They were likely derived from enriched lithospheric mantle source and were subjected to crustal contamination during magma evolution. Early Cretaceous mantle melting is coeval with the widespread late Yanshanian granitic magmatism in North China. Early Cretaceous time may correspond to a critical period when a temperature increase due to lithospheric thinning allowed the intersection of the local geotherm and the wet peridotite solidus. While some mantle-derived magmas were erupted, most were trapped at variable crustal depths, triggering large-scale concomitant melting of the crust. Lithospheric thinning must have continued until the late Cretaceous because of the change in the source of mafic magmas from lithospheric to asthenospheric at that time. It is proposed that removal of the lithospheric keel beneath the North China craton may have been initiated as early as the Jurassic, but with the most intense period in the Cretaceous between 130–75 Ma. Such a relatively long timescale (~100 Ma) emphasizes the role of thermomechanical erosion by convective mantle in lithospheric thinning beneath this region.  相似文献   

8.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly.  相似文献   

9.
The Tarim Craton is one of three large cratons in China. Presently, there is only scant information concerning its crustal evolutionary history because most of the existing geochronological studies have lacked a combined isotopic analysis, especially an in situ Lu–Hf isotope analysis of zircon. In this study, Precambrian basement rocks from the Kuluketage and Dunhuang Blocks in the northeastern portion of the Tarim Craton have been analyzed for combined in situ laser ablation ICP-(MC)-MS zircon U–Pb and Lu–Hf isotopic analyses, as well as whole rock elements, to constrain their protoliths, forming ages and magma sources. Two magmatic events from the Kuluketage Block at ∼2.4 Ga and ∼1.85 Ga are revealed, and three stages of magmatic events are detected in the Dunhuang Block, i.e., ∼2.0 Ga, ∼1.85 Ga and ∼1.75 Ga. The ∼1.85 Ga magmatic rocks from both areas were derived from an isotopically similar crustal source under the same tectonic settings, suggesting that the Kuluketage and Dunhuang Blocks are part of the uniform Precambrian basement of the Tarim Craton. Zircon Hf model ages of the ∼2.4 Ga magmatism indicate that the crust of the Tarim Craton may have been formed as early as the Paleoarchean period. The ∼2.0 Ga mafic rock from the Dunhuang Block was formed in an active continental margin setting, representing an important crustal growth event of the Tarim Craton in the mid-Paleoproterozoic that coincides with the global episode of crust formation during the assembly of the Columbia supercontinent. The ∼1.85 Ga event in the Kuluketage and Dunhuang Blocks primarily involved the reworking of the old crust and most likely related to the collisional event associated with the assembly of the Columbia supercontinent, while the ∼1.75 Ga magmatism in the Dunhuang Block resulted from a mixture of the reworked Archean crust with juvenile magmas and was most likely related to a post-collisional episode.  相似文献   

10.
The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that amalgamates the Western and Eastern Blocks of the North China Craton (NCC), witnessed extensive magmatism and metallogeny during Mesozoic, associated with intraplate tectonics and differential destruction of the cratonic lithosphere. Here we investigate a suite of porphyry dykes surrounding the Mapeng batholith in the Fuping Complex within the TNCO in relation to the Mesozoic gold and molybdenum mineralization. The major element chemistry of these dykes show a range of SiO2 (57.92 to 69.47 wt.%), Na2O (3.20 to 4.77 wt.%), K2O (3.12 to 4.60 wt.%) and MgO (0.51 to 3.67 wt.%), together with high concentration of LREE and LILE, and relatively low contents of HREE and HFSE. The rocks display (La/Yb)N = 13.53–48.11, negative Nb, Ta, Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The mineralogy and geochemistry of the porphyry dykes indicate the rocks to be high-K calc-alkaline, and I-type, with adakitic features similar to those of the adjacent Mapeng batholith. The source magma for these rocks was derived from a mixture of reworked ancient continent crust and juvenile mantle materials. The zircon U–Pb data from these rocks show ages in the range of 124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes represent capture from the basement rocks during melting. The zircon Lu–Hf isotopic compositions show negative εHf(t) values varying from − 27.8 to − 11.3, with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the Mesozoic magmatism and associated metallogeny involved substantial recycling of ancient basement rocks of the NCC. We present an integrated model to evaluate the genesis of the porphyry systems and their relation to mineralization. We envisage that these dykes probably acted as stoppers (impermeable barriers) that prevented the leakage and run-off of the ore-bearing fluids, and played a key role in concentrating the gold and molybdenum mineralization.  相似文献   

11.
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.  相似文献   

12.
A series of significant geological changes indicated by deformation, magmatic–metallogenic systems, and the climate and environment occurred in East Asia during Late Jurassic to Early Cretaceous time, but the timing and development of the ‘Yanshan movement’ on the north margin of the North China Craton has not been well-established. Based on the evidence of tectonic deformation and magmatic activity, previous studies resulted in two views of the beginning of the Yanshan movement: Early Jurassic vs. late Middle Jurassic. In this work, the timing of the initial Yanshan movement was investigated by examining the Jurassic Chenjiabangou section in the Ningwu–Jingle basin overlying the north-central part of the North China Craton. The timing of the initial Yanshan movement was constrained by restoration of stream flow directions, determination of boundaries of sedimentary cycles, identification of heavy mineral assemblages in clastic rocks, quantification of changes in chemical compositions, and zircon U–Pb isotope dating. The results indicate that the basal conglomerates of the Middle Jurassic Yungang Formation (Bathonian) mark the beginning of the Yanshan movements. Evidence supporting this conclusion includes the following. (1) The switch from transgressive lacustrine deposition to regressive lacustrine deposition in the Yungang Formation sedimentary succession indicates a change from extension to compression, possibly reflecting uplift. (2) Early-stage clastic rocks rich in quartz and feldspar are replaced by feldspar detritus in late-stage clastic rocks; the heavy mineral assemblage dominated by zircon at the early stages changed to garnet-dominated assemblage upsection. Moreover, the concentrations of CaO, MgO, CO2, and Fe2O3 + FeO and the Fe2O3/FeO ratio changed abruptly near the basal conglomerates of the Middle Jurassic Yungang Formation, suggesting increased denudation. (3) Conglomerates at the bottom of the Middle Jurassic Yungang Formation were deposited approximately 168 million years ago, as inferred from the age of zircons in tuffaceous micrite (160.6 ± 0.55 Ma) at the bottom of the Upper Jurassic Tianchihe Formation (Oxfordian) and the age of zircons in pyroclastic rocks (179.2 ± 0.79 Ma) in the Lower Jurassic Yongdingzhuang Formation (Toarcian). These lines of evidence indicate that initial Jurassic Yanshan movement began 168 million years ago during Middle Jurassic time.  相似文献   

13.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

14.
Detrital zircon U–Pb ages, whole-rock Nd isotopic, and geochemical data of metasedimentary rocks from the Wutai Complex in the Central Zone, North China Craton, have been determined. Compositionally, these rocks are characterized by a narrow variation in SiO2/Al2O3 (2.78–3.96, except sample 2007-1), variable Eu anomalies, spanning a range from significantly negative Eu anomalies to slightly positive anomalies (Eu/Eu* = 0.58–1.12), and positive ε Nd (t) values (0.1–1.97). The 18 detrital zircons of one sample yielded age populations of 2.53 Ga, 2.60 Ga, and 2.70–2.85 Ga. Geochemical data reveal intermediate source weathering, varying degrees of K-metasomatism in the majority of these metasedimentary rocks, whereas other secondary disturbances seem to be negligible. Detailed analysis in detrital zircon U–Pb geochronology, whole-rock Nd isotope, and geochemistry shows that these metasedimentary rocks are derived from a mixed provenance. The predominant derivation is from the late Archean granitoids and metamorphic volcanics in the Wutai Complex, and there is also input of older continental remnants, except TTG gneisses, from the Hengshan and Fuping Complexes. The sediments were probably deposited in fore-arc or/and intra-arc basins within an arc system.  相似文献   

15.
《Gondwana Research》2016,29(4):1361-1372
New in situ U–Pb-Hf analyses of detrital zircons from across the Archaean Dharwar craton indicate significant juvenile crustal extraction events at ~ 3.3 and 2.7 Ga, and continuous extraction from 3.7 to 3.3 Ga. Reworking in the older western block at ~ 3.0 Ga marks the onset of cratonisation, most likely due to ‘modern’ plate tectonic processes, whilst reworking in both the western and younger eastern block at 2.55–2.50 Ga indicates accretion of the two terranes and final cratonisation much later than in most other Archaean terranes (~ 2.7 Ga). Different patterns of disturbance to the zircon U–Pb systematics reflect variations in both the U content of parent rocks and later metamorphic conditions. Tectonic links are observed between the Kaapvaal and western Dharwar cratons, and between the north China and eastern Dharwar cratons, though none of these links necessarily requires a consanguineous origin.  相似文献   

16.
The Hongtoushan volcanogenic massive sulfide (VMS) deposit is the largest Archean Cu–Zn deposit in China, located in the Qingyuan greenstone belt on the northern margin of the North China Craton. The Cu–Zn mineralization was stratigraphically controlled by the interbeds (~ 100 m in thickness) of mafic–felsic volcanic sets and overlain by banded iron layers. However, the relationship between VMS deposits and associated volcanics has not been examined. This study ultimately clarifies the times and sources of the volcanics and mineralization. Based on in situ zircon U–Pb and O isotope on VMS-hosting mafic, felsic volcanic rocks, banded and massive sulfide ores and postmineralization pegmatite vein, we considered that there were two main formation stages for the Qingyuan Cu–Zn deposits; one was exhalative-hydrothermal sedimentation and another was further Cu–Zn enriched by later hydrothermal processes. The timing of the first stage occurred at 2571 ± 6 Ma based on the magmatic zircons in the VMS-hosting mafic volcanic rocks, from which the inherited zircons also indicate the existence of 2.65–3.12 Ga ancient supercrustal rocks in the Qingyuan district. A modern mantle-like δ18Ozircon value of 5.5 ± 0.1‰ (2SD) for this volcanism was well preserved in the inherited core domains of ore samples. It suggests that the mafic volcanics was most likely sourced from partial melting of juvenile crust, e.g., TTG granites. A large-scale metamorphic or hydrothermal event is documented by the recrystallized zircons in sulfide ores. The timing is tightly constrained by the hydrothermal zircon U–Pb ages. They are 2508 ± 4 Ma for the banded ore, 2507 ± 4 Ma for the massive ore and 2508 ± 2 Ma for the postmineralization pegmatite vein. These indistinguishable ages indicate that the 2507 Ma hydrothermal systems played a significant role in the upgrading of the VMS Cu–Zn orebodies. The weighted δ18O values of hydrothermal zircons show a successively increasing trend from 6.0 ± 0.1‰ (2σ) for the banded ore, 6.6 ± 0.2‰ (2σ) for the massive ore to 7.3 ± 0.2‰ (2σ) for the later pegmatite vein. This variation might be induced by gradual inputting of the δ18O-rich oceanic crust and/or oceanic sediment during the hydrothermal cycling system. Considering its modern mantle-like oxygen isotope composition of 2571 Ma volcanism, a submarine volcanic hydrothermal system involving mantle plumes is a preferred setting for the Neoarchean VMS Cu–Zn deposits in the Qingyuan greenstone belt.  相似文献   

17.
Geological mapping and zircon U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) dating has identified a Mesoarchean (2857 ± 17 Ma) geological unit in the Luanjiajie area of the northern margin of the North China Craton, within the northern part of Liaoning Province, China. This unit is dominated by tonalitic and trondhjemite gneisses that form part of a typical tonalite–trondhjemite–granodiorite (TTG) rock assemblage. These Mesoarchean gneisses are enriched in Na and depleted in K, yield K2O/Na2O ratios of 0.34–0.50, have Rittmann index (σ) values of 1.54–3.04, and are calc-alkaline. They have EuN/EuN* values of 0.77–1.20 (average of 1.03), indicating that these samples have negligible Eu anomalies, and yield high LaN/YbN values (4.92–23.12). These characteristics indicate that these Mesoarchean gneisses have fractionated rare earth element (REE) compositions that are enriched in the light REE (LREE) and depleted in the heavy REE (HREE), with steeply dipping chondrite-normalized REE patterns. These gneisses are also enriched in Rb, Th, K, Zr, and Hf, and are relatively depleted in Ta, Nb, P, and Ti. In summary, the magma that formed these tonalitic and trondhjemite gneisses was most likely derived from the partial melting of lower-crustal basaltic rocks during subduction. The timing of formation (2.85 Ga) of the Luanjiajie tonalite and trondhjemite gneisses probably represents the timing of initiation of plate tectonics within the LongGang Block during a SE-directed subduction event. The presence of inherited zircons with ages of >3.0 Ga within the Luanjiajie gneisses suggests that this area may contain as yet undiscovered rocks that formed before 3.0 Ga.  相似文献   

18.
We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422 Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439 ± 4, 443 ± 2, and 443 ± 5 Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423 Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162 Ma, as well as secondary peaks between 1344 and 3329 Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian.  相似文献   

19.
The timing and extent of cratonic destruction are crucial to understanding the crustal evolution of the North China Craton (NCC). Zircon U–Pb–Hf isotope data and the whole-rock major and trace element characteristics of the Huyu igneous rocks in northwestern Beijing, China, provide possible new evidence for the initial destruction of the NCC. The igneous rocks occur as several sills and dikes, including lamprophyre, monzonite porphyry, and aplite. The lamprophyres have high Mg# and K2O contents. The monzonite porphyries have high Mg#, high K2O contents, and negative εHf(t) values with zircon U–Pb ages of 225.5–227.7 Ma. These two types of rocks are both enriched in large ion lithosphere elements (LILEs) and light rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs) and high rare earth elements (HREEs) and have almost no Eu anomalies and relatively high total rare earth element (ΣREE) contents. In contrast, the aplites exhibit high silica and K2O contents, low MgO contents, and more negative εHf(t) values with a zircon U–Pb age of 206.2 Ma. The aplites are also enriched in LILEs and LREEs but are depleted in HFSEs and HREEs, with strongly negative Eu, Ti, P, La, Ce, and Sr anomalies and relatively low ΣREE contents. These results indicate that the lamprophyres and monzonite porphyries represent a continuous cogenetic magma evolution series after melt derived from an enriched metasomatized lithospheric mantle experienced crust assimilation and fractional crystallization. The aplites were produced by the fractional crystallization of low-Mg parental magma derived from melting of the ancient Archaean crust. The occurrence of the Huyu intrusive rocks with many other plutons of similar ages on the northern margin of the NCC suggests that the northern NCC entered an intraplate extensional tectonic environment in the Late Triassic.  相似文献   

20.
Detrital zircons from the Ordovician and Devonian sedimentary cover of the Siberian Craton were analyzed for U/Pb geochronology to understand their sediment provenances. Five main age-peaks were identified in the zircon U/Pb age-spectra: (1) Neoarchaean – early Palaeoproterozoic (2.7–2.4 Ga); (2) late Palaeoproterozoic (2.0–1.65 Ga); (3) minor early Neoproterozoic (1.0–0.75 Ga); (4) Ediacaran (0.65–0.60 Ga) and (5) Cambrian – Early Ordovician (0.54–0.47 Ga), reflecting the main magmatic events in the sediment source regions. The oldest zircons (groups 1 and 2) are derived from the Siberian Craton which amalgamated during the Neoarchean – Palaeoproterozoic. The Neoproterozoic zircons (groups 3 and 4) likely sourced from southwestern basement uplifts and Neoproterozoic belts of the Siberian margin such as the Yenisey Ridge and Baikal-Muya region. The provenance of the youngest zircons (group 5) can be traced to the Altai–Sayan fold-belt, where peri-Gondwanan microcontinents and island-arcs accreted to Siberia during late Neoproterozoic – early Palaeozoic progressive consumption of the Palaeo-Asian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号