首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The 12 May 2008 Ms 8.0 Wenchuan earthquake, China, was one of largest continental thrusting events worldwide. Based on interpretations of post-earthquake high-resolution remote sensing images and field surveys, we investigated the geometry, geomorphology, and kinematics of co-seismic surface ruptures, as well as seismic and geologic hazards along the Longmen Shan fold-and-thrust belt. Our results indicate that the Wenchuan earthquake occurred along the NE–SW-trending Yingxiu–Beichuan and Guanxian–Anxian faults in the Longmen Shan fold-and-thrust belt. The main surface rupture zones along the Yingxiu–Beichuan and Guanxian–Anxian fault zones are approximately 235 and 72 km in length, respectively. These sub-parallel ruptures may merge at depth. The Yingxiu–Donghekou surface rupture zone can be divided into four segments separated by discontinuities that appear as step-overs or bends in map view. Surface deformation is characterized by oblique reverse faulting with a maximum vertical displacement of approximately 10 m in areas around Beichuan County. Earthquake-related disasters (e.g., landslides) are linearly distributed along the surface rupture zones and associated river valleys.The Wenchuan earthquake provides new insights into the nature of mountain building within the Longmen Shan, eastern Tibetan Plateau. The total crustal shortening accommodated by this great earthquake was as much as 8.5 m, with a maximum vertical uplift of approximately 10 m. The present results suggest that ongoing mountain building of the Longmen Shan is driven mainly by crustal shortening and uplift related to repeated large seismic events such as the 2008 Wenchuan earthquake. Furthermore, rapid erosion within the Longmen Shan fold-and-thrust belt occurs along deep valleys and rupture zones following the occurrence of large-scale landslides triggered by earthquakes. Consequently, we suggest that crustal shortening related to repeated great seismic events, together with isostatic rebound induced by rapid erosion-related unloading, is a key component of the geodynamics that drive ongoing mountain building on the eastern Tibetan Plateau.  相似文献   

2.
We propose a genetic algorithm (GA) search procedure for waveform modeling of local crustal earthquakes for optimal one-dimensional (1-D) crustal velocity model. Both waveforms and travel-time data are used for the structure determination. The use of travel times in model evaluation improves the waveform modeling performance in the sense of computation speed and accuracy. We applied this method to broadband waveforms of a local crustal earthquake (M 4.2) in Northeast Japan. P-wave velocities of the crustal model are found to be 4.95 ± 0.30, 5.9 ± 0.02, and 6.51 ± 0.20 km/s for a surface layer, upper crust and lower crust, respectively. The surface layer thickness and the Conrad and Moho depths are found to be 3.01 ± 0.8, 17.77 ± 0.4 and 34.59 ± 1.0 km, respectively. For epicentral distances <200 km, our synthetic waveforms match the observed ones generally well. Early arrivals are mainly observed at stations near the Pacific coast in the forearc area having a thinner crust. In contrast, delayed arrivals appear at stations near the volcanic front and back-arc areas where low-velocity anomalies exist due to the effect of the Pacific slab dehydration and the hot upwelling flows in the mantle wedge. In general, our results agree well with the main tectonic setting of the study area, which confirms the reliability of the proposed approach. Despite a 1-D velocity model is too simple to represent the complex crustal structure, it is still required for the conventional routine analysis of seismology, such as earthquake location and source parameter studies. The current approach is considered as a step toward the genetic full waveform modeling for the 3-D velocity model estimation.  相似文献   

3.
We have measured both P- and S-wave velocities (Vp and Vs) and Poisson's ratios (υ) of 60 typical ultrahigh pressure (UHP) metamorphic rock samples from the Chinese Continental Scientific Drilling (CCSD) main and pre-pilot holes and surface outcrops in the Sulu–Dabie orogenic belt at hydrostatic confining pressures up to 850 MPa. The experimental results, together with those compiled in Handbook of Seismic Properties of Minerals, Rocks and Ores [ Ji, S.C., Wang, Q., Xia, B., 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores. Polytechnic International Press, Montreal, 630 pp.], reveal that except for monomineralic rocks such as quartzite, serpentinite, anorthosite, limestone, and marble the rest of the rock types have Poisson's ratios falling along an upward convex curve determined from the correlations between elastic moduli and density. Poisson's ratios increase with density as the lithology changes from granite, felsic gneiss and schist, through diorite–syenite, intermediate gneiss and metasediment, to gabbro–diabase, amphibolite, and mafic gneiss, and then decrease as the rocks become ultramafic in composition. Eclogite has a higher density but a lower Poisson's ratio than peridotite. The results were applied to constrain the crustal composition and tectonic evolution of the Chinese continental crust based on crustal thickness (H) and Poisson's ratio (υ) from 248 broadband seismic stations, measured using teleseismic receiver function techniques. The North China, Yangtze, South China and Northeast China blocks and Songpan–Ganzi Terrane are dominated by low (υ < 0.26) and moderate (0.26  υ < 0.28) υ values (> 70%), suggesting the dominance of felsic composition in the crust. The Lhasa terrane, Qiangtang terrane, and Indochina block are characterized by high proportions (33–42%) of measurements with very high υ values (≥ 0.30 and H is found for the South China block, Northeast block, Lhasa block, Qiangtang terrane and Indochina block, indicating either tectonic thickening of the felsic upper and middle crust by folding and thrusting or the removal of mafic layers from the lower crust into the upper mantle by delamination.  相似文献   

4.
Basaltic dykes of Peninsular Malaysia are confined to the Eastern Belt (Indochina/East Malaya block) as compared with the Western Belt (Sibumasu Block). The dyke intruded through a crustal fracture formed by stress developed from the evolution of two offshore basins (Malay and Penyu basins) east of Peninsular Malaysia. The Ar–Ar dating from the present study combined with the previous geochronological data indicate that the ages of dykes range from 79 ± 2 Ma to 179 ± 2 Ma. Thus it is difficult to correlate the dykes with the closure of Tethys during Permo-Triassic time because of the younger age of the dykes. The majority of the dykes exposed in the Eastern Belt may have been attributed to the difference of crustal thickness between the Eastern and Western belt of Peninsular Malaysia. A thicker Western Belt crust (13 km more than both Eastern and Central belts) is difficult to rupture with normal plate tectonic stress and therefore serves to contain the rise of a mantle derived melt. The chemistry indicates the basalts are olivine to quartz normative and are of the continental within-plate category.  相似文献   

5.
Lei et al. (2008) revealed a low-velocity (low-V) anomaly in the lower crust under the source area of the 4 July 2006 Wen-An earthquake (M 5.1) in North China. In this work we tried to investigate the temporal variations of the crustal structure by using a number of P and PmP (Moho reflected) wave arrival times recorded by 107 digital seismic stations from earthquakes that occurred separately in 2002, 2003, 2004, and 2005–2006 to determine P-wave velocity structures in and around the source area of the Wen-An earthquake in different periods. Our results show that tomographic images inferred from the data sets in different years are all dominated by a low-V anomaly in the lower crust under the Wen-An source area. However, there exist some differences in the P-wave velocity image in the Wen-An source area inferred from the P and P + PmP data sets, suggesting that the PmP data have improved the tomographic images in the middle and lower crust, but the results from the 2005–2006 P and P + PmP data sets all show a relatively lager increase of the low-V anomaly under the Wen-An source area in the amplitude and extent as compared with those from the 2003 and 2004 P and P + PmP data sets. Incorporating the previous results, if this low-V anomaly may indicate the existence of fluids, then our results suggest that the occurrence of the Wen-An earthquake is not only related to the long-term influence of fluids that decrease the effective normal stress on the fault plane, but also closely associated with the drastic increase of such influence. However, this study is just an experimental work and the results are still preliminary because the resolution scale of the present tomographic model is much larger than the Wen-An source area and our extensive tests show that different samplings of seismic rays from different data sets have affected the details of the tomographic images, suggesting that the present sparse data coverage can hardly detect reliably any temporal variations of the velocity anomalies in the Wen-An source area. In future studies it is necessary to improve the resolution of crustal tomography to the size of the rupture zone and utilize identical seismic ray paths from the same pairs of sources and receivers in order to detect any temporal variations of the crust structure in the source area of a large earthquake.  相似文献   

6.
A passive seismic experiment across the Longmenshan (LMS) fault belt had been conducted between August 2006 and July 2007 for the understanding of geodynamic process between the Eastern Tibet and Sichuan basin. We herein collected 3677 first P arrival times with high precision from seismograms of 288 teleseismic events so as to reconstruct the upper mantle velocity structure. Our results show that the depth of the Lithosphere–asthenosphere boundary (LAB) changes from 70 km beneath Eastern Tibet to about 110 km beneath Longquanshan, Sichuan Basin, which is consistent with the receiver function imaging results. The very thin mantle part of the lithosphere beneath Eastern Tibet may suggest the lithosphere delamination due to strong interaction between the Tibetan eastward escaping flow and the rigid resisting Sichuan basin, which can be further supported by the existences of two high-velocity anomalies beneath LAB in our imaging result. We also find there are two related low-velocity anomalies beneath the LMS fault belt, which may indicate magmatic upwelling from lithosphere delamination and account for the origin of tremendous energy needed by the devastating Wenchuan earthquake.  相似文献   

7.
In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a “silent” area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain.Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes.Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.  相似文献   

8.
On 21 March 2008, an Ms7.3 earthquake occurred at Yutian County, Xinjiang Uygur Autonomous Region, which is in the same year as 2008 Mw 7.9 Wenchuan earthquake. These two earthquakes both took place in the Bayar Har block, while Yutian earthquake is located in the west edge and Wenchuan earthquake is in the east. The research on source characteristics of Yutian earthquake can serve to better understand Wenchuan earthquake mechanism. We attempt to reveal the features of the causative fault of Yutian shock and its co-seismic deformation field by a sensitivity-based iterative fitting (SBIF) method. Our work is based on analysis and interpretation to high-resolution satellite (Quickbird) images as well as D-InSAR data from the satellite Envisat ASAR, in conjunction with the analysis of seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 22 km long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in the Qira County. It is characterized by distinct linear traces and a simple structure with 1–3 m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone are seen many secondary fractures and fault-bounded blocks by collapse, exhibiting remarkable extension. The co-seismic deformation affected a big range 100 km × 40 km. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. The maximum subsidence displacement is ~2.6 m in the LOS, and the maximum uplift is 1.2 m. The maximum relative vertical dislocation reaches 4.1 m, which is 10 km distant from the starting rupture point to south. The 42 km-long seismogenic fault in the subsurface extends in NS direction as an arc, and it dipping angle changes from 70° near the surface to 52° at depth ~10 km. The slip on the fault plane is concentrated in the depth range 0–8 km, forming a belt of length 30 km along strike on the fault plane. There are three areas of concentrating slip, in which the largest slip is 10.5 m located at the area 10 km distant from the initial point of the rupture.  相似文献   

9.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

10.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

11.
The May 12, 2008, Mw 7.9 Wenchuan earthquake was induced by failure of two of the major faults of the Longmen Shan thrust fault zone along the eastern margin of Tibet Plateau. Our study focused on trenches across the Yingxiu–Bichuan fault, the central fault in the Longmen Shan belt that has a coseismic surface break of more than 200 km long. Trenching excavation across the 2008 earthquake rupture on three representative sites reveals the styles and amounts of the deformation and paleoseismicity along the Longmen Shan fault. Styles of coseismic deformation along the 2008 earthquake rupture at these three sites represent three models of deformation along a thrust fault. Two of the three trench exposures reveal one pre-2008 earthquake event, which is coincident with the pre-existing scarps. Based on the observation of exposed stratigraphy and structures in the trenches and the geomorphic expressions on ground surface, we interpret the 2008 earthquake as a characteristic earthquake along this fault. The interval of reoccurrence of large earthquake events on the Central Longmen Shan fault (the Yingxiu–Beichuan fault) can be inferred to be about 11,000 years according to 14C and OSL dating. The amounts of the vertical displacement and shortening across the surface rupture during the 2008 earthquake are determined to be 1.0–2.8 m and 0.15–1.32 m, respectively. The shortening rate and uplift rate are then estimated to be 0.09–0.12 mm/yr and 0.18–0.2 mm/yr, respectively. It is indicated that the deformation is absorbed mainly not by shortening, but by uplift along the rupture during the 2008 earthquake.  相似文献   

12.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

13.
The latest hydraulic fracturing and stress relief measurement data in the Chinese mainland were collected. The total of 3856 data entries are measured at 1474 locations. The measured area covers 75–130°E and 18–47°N, and the depth range varies from surface to 4000 meters depth, which generally includes each active tectonic block of China and each segment of North–South seismic belt. We investigated the tectonic stress field by removing the effect of gravity. For this, we assume lateral constraints and Heim’s rule. The gravity contribution is removed by using the assumption of lateral constraint and Heim’s rule. Our results show: (1) the maximum and the minimum horizontal principal stress σH, σh and the vertical stress σV in the shallow crust of China all increase linearly with depth: σH = 0.0229D + 4.738, σh = 0.0171D + 1.829, σV = 0.0272D. Maximum and minimum horizontal tectonic stress varies as a function of depth D linearly 4.738 < σT < 0.0139D + 4.738 and 1.829 < σt < 0.0162D + 1.829. The horizontal tectonic differential stress is σT  σt = 0.0058D + 2.912. (2) The intermediate value of σT1 (regression value of tectonic stress inferred from the assumption of lateral constraint at 2000 m depth) changes in different areas, the maximum value of which is 45.6 MPa, while the minimum value of which is 26.8 MPa. Horizontal tectonic differential stress σT  σt increases linearly with depth and the maximum and minimum of σT  σt is 25.3 MPa and 13.0 MPa, respectively. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong Indo-Eurasian collision dominates the present tectonic stress field in Chinese mainland. (3) Compared with other study regions, the northward crustal compression to the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher at deeper depth. (4) The orientations of σT in China mainland generally form a radial scattering pattern centered in Tibetan Plateau. From western to eastern China, they rotate gradually clockwise from NS to NNE, NE, NEE, and SE, which is consistent with the result of focal mechanism solutions.  相似文献   

14.
We investigate the stress regimes acting during serpentinization and faulting of the largest known subcontinental lithospheric peridotite body, namely the Ronda peridotites (Betic Cordillera, S. Spain). Petrological and structural analyses on serpentinites grown along fault planes crosscutting the peridotite slab, reveal that they were developed during three superposed stress tensors: the oldest one (E1) is characterized by NW–SE sub-horizontal compression; the intermediate one consists in NE–SW to ENE–WSW extension with orthogonal compression (E2); and the youngest one (E3) shows a sub-vertical maximum stress axis and NW–SE sub-horizontal extension. During serpentinization, maximum and minimum stress axes flip between a NW–SE horizontal position and a vertical one in the whole peridotite body (E1 and E3), while E2 represents an intermediate stress stage. Field relationships and previous petrological and geochronological data indicate that serpentinization and associated stress tensors are coeval with intrusive leucogranite dikes crosscutting the peridotites, thus constraining these processes to 19–22 Ma and occurring at upper continental crust depths (P < 4 kbar). Gravity data reveal that the average density of the Ronda mantle slab (~ 2.7–2.8 g/cm3) shows a negligible contrast with the surrounding crustal rocks, thus suggesting that the peridotite body is serpentinized in a great proportion. Our preferred tectonic model to account for the evolution of the Ronda peridotites in the upper crust considers that E1 compression was linked to the collision of the Alborán continental domain with the Iberian passive margin during the Gibraltar Arc formation. Subsequently, the sudden onset of extension recorded within the peridotite slab (E2 and E3) was favored by serpentinization-driven buoyancy.  相似文献   

15.
This study presents the crustal shear wave velocity structure and radial anisotropy along two linear seismic arrays across the North China Craton (NCC) from ambient noise tomography. About a half to one year long ambient noise data from 87 stations were used for obtaining the inter-station surface wave empirical Green's functions (EGFs) from cross-correlation. Rayleigh and Love dispersion curves within the period band 5–30 s were measured from the EGFs of the vertical and transverse components, respectively. These dispersion data were then used to determine the crustal shear wave velocity structure (VSV and VSH) and radial anisotropy (2(VSH ? VSV) / (VSH + VSV)) from point-wise linear inversion with constraints from receiver function analysis. Our results reveal substantial structural variations among different parts of the NCC. The Bohai Bay Basin in the eastern NCC is underlain by a thin crust (~ 30 km) with relatively low velocities (particularly VSV) and large positive radial anisotropy in the middle to lower crust. Such a crustal structure is no longer of a cratonic type and may have resulted from the widespread tectonic extension and intensive magmatism in this region since late Mesozoic. Beneath the Ordos Basin in the western NCC, the crust is relatively thicker (≥ 40 km) and well stratified, and presents a large-scale low velocity zone in the middle to lower crust and overall weak radial anisotropy except for a localized lower crust anomaly. The overall structural features of this region resemble those of typical Precambrian shields, in agreement with the long-term stability of the region. The crustal structure under the Trans North China Orogen (TNCO, central NCC) is more complicated and characterized by smaller scale velocity variations, strong positive radial anisotropy in the middle crust and rapid change to weak-to-negative anisotropy in the lower crust. These features may reflect complex deformations and crust–mantle interactions, probably associated with tectonic extension and magmatic underplating during the Mesozoic to Cenozoic evolution of the region. Our structural images in combination with previous seismic, geological and geochemical observations suggest that the Phanerozoic lithospheric reactivation and destruction processes may have affected the crust (especially the middle and lower crust) of the eastern NCC, and the effect probably extended to the TNCO, but may have minor influence on the crust of the western part of the craton.  相似文献   

16.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

17.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   

18.
The Dong’an gold deposit is a large-sized epithermal gold deposit recently discovered in the Lesser Khingan Range, NE China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of a medium–coarse grained alkali-feldspar granite, the major host rock of the Dong’an gold deposit. The LA–ICP–MS zircon U–Pb dating of the medium–coarse grained alkali-feldspar granite yields an early Jurassic age of 176.3 ± 1.1 Ma (MSWD = 0.62). The whole-rock geochemical data indicate that the samples are felsic, ferroan, alkali-calcic and peraluminous with relatively high alkali (K2O + Na2O) content. They are enriched in LREEs and LILEs (e.g., Rb, Ba, K), but are depleted in HFSEs (e.g., Nb, Ta, P, Ti), especially in P and Ti, showing characteristics of volcanic arc magmas and similarities with the Early–Middle Jurassic granitic rocks in Xing’an Mongolian orogenic belt. Meanwhile, the negative Eu, Nb, Ta, Ti, and P anomalies are consistent with fractional crystallization of plagioclase, Ti-bearing phases (rutile, ilmenite, titanite, etc.) and apatite during magma evolution. The samples have low Nb/Ta ratios (8.65–14.91) and low Mg# values (18–36), which are indicative of crustal derived magmas and no interaction between source magmas and the mantle. In-situ Hf isotopic analyses of the zircons from the medium–coarse grained alkali-feldspar granite yield εHf(t) values of +3.38–+5.68 and two-stage model ages (TDM2) of 772–900 Ma, indicating the magmas formed this intrusion were generated by partial melting of Neoproterozoic basaltic materials in the young lower crust, and the magma source could be derived from a depleted mantle. The medium–coarse grained alkali-feldspar granite most likely formed in the late stage of Toarcian subduction of the Pacific plate, which can be identified on the tectonic setting discrimination diagrams, and the formation of this intrusion was associated with underplating of mantle-derived magmas, which provided heat for crustal partial melting. Similar to the medium–coarse grained alkali-feldspar granite, large amounts of granitic rocks and a series of nonferrous metal hydrothermal deposits (Mo, Cu, Au) formed in northeast China as results of magmatic activities triggered by subduction of the Pacific plate during the Early–Middle Jurassic.  相似文献   

19.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

20.
The Aolunhua porphyry Mo–Cu deposit is located in the northern margin of the North China Craton (NCC), and belongs to the northern part of the Xilamulun metallogenic belt. More than 90% of the mineralization occurs within the Aolunhua monzogranite-porphyry; a small part is hosted within quartz veins that crosscut Late Permian strata. The syenogranite, occurring as dikes and cutting through the Aolunhua monzogranite-porphyry, is radially distributed in the mining district. Zircon U–Pb ages show that the Aolunhua monzogranite-porphyry and the post-ore syenogranite have concordant 206Pb/238U ages of 138.7 ± 1.2 Ma and 131.4 ± 2.8 Ma, respectively. Based on analyses of major, trace elements and Hf-isotopes, the Aolunhua porphyry is characterized by high Sr low Y with high La/Yb and Sr/Y ratios typical of adakitic granites, whereas the post-ore syenogranite has lower Sr and higher Y values, showing apparently negative Eu anomalies (δEu = 0.26 to 0.31). The Hf isotopic composition of the Aolunhua porphyry [εHf(t) = + 3.6 to + 9.2] and the post-ore syenogranite [εHf(t) = + 3.6 to + 8.7] indicates that both juvenile crustal sources and depleted mantle contributed to their origin. The regional geological setting together with the discrepancy of geochemistry between the Aolunhua porphyry and the post-ore syenogranite probably indicates that they formed in different tectonic regimes. The Aolunhua porphyry is derived from partial melting of the thickened crust due to underplating of the basaltic magma under the transformation tectonic regime, while the post-ore syenogranite comes from the crustal root melting during the lithospheric delamination stage under the lithosphere thinning regime of northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号