首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

2.
Analysis of zircons from Australian affinity Permian–Triassic units of the Timor region yield age distributions with large age peaks at 230–400 Ma and 1750–1900 Ma, which are similar to zircon age spectra found in rocks from NE Australia and crustal fragments now found in Tibet and SE Asia. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the northern margin of Australia. The Cimmerian Block rifted from Gondwana in the Early Permian during the initial formation of the Neo-Tethys Ocean. The zircon age spectra of the Gondwana Sequence of NE Australia and in the Timor region are most similar to the terranes of northern Tibet and Malaysia, further substantiating a similar tectonic affinity. A large 1750–1900 Ma zircon peak is also very common in other terranes in SE Asia.Hf analysis of zircon from the Aileu Complex in Timor and Kisar Islands shows a bimodal distribution (both radiogenically enriched and depleted) in the Gondwana Sequence at ~ 300 Ma. The magmatic event from which these zircons were derived was likely bimodal (i.e. mafic and felsic). This is substantiated by the presence of Permian mafic and felsic rocks interlayered with the sandstone used in this study. Similar rock types and isotopic signatures are also found in Permian–Triassic igneous units throughout the Cimmerian continental block.The Permian–Triassic rocks of the Timor region fill syn-rift intra-cratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 7–8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young Banda collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwanan terranes will rejoin.  相似文献   

3.
Detachment of the sliver-like Cimmerian terrane from eastern Gondwana in the Early Permian triggered mafic volcanism in many parts of the rift zone. To understand this tectonic episode we have carried out paleomagnetic investigations on mafic volcanic for-mations that were erupted on key terranes that now form part of Tibet. Specifically, we will present data from sections near Lhasa City (central Lhasa block) and Tuotuohe (central Qiangtang Block) as well as near Gyanyima (Paleotethyan sea-mount) that was emplaced onto the floor of Palaeotethys during the Late Permian. Paleomagnetic plots from each location will be used for tectonic calculations. Our new data will be used to evaluate regional scale models con-cerned with how the Cimmerian terranes in southern and SE Asia (from Iran-Tibet-SW China-Myanmar- Thailand-Sumatra) formerly abutted eastern Gond-wana.  相似文献   

4.
The Paleo-Tethys formed a large ocean basin that existed between Laurasia and Gondwana during Late Paleozoic to Early Mesozoic times. It opened in the Early Devonian by the rifting of Gondwanaland and closed at around latest Triassic time by the collision of the Cimmerian continent to Laurasia (Metcalfe, 1999). We reconstructed opening and closing process of the Paleo-Tethys in Northern Thailand.  相似文献   

5.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

6.
The palaeontologically rich and lithologically diverse Triassic successions of Timor provide a key stratigraphic and palaeontological link between northwestern Australia and other terranes of former eastern Gondwana (present-day Southeast Asia). Timor is now located in the zone of collision between the northern margin of the Australian continent and island arc terranes bordering the Eurasian plate, with the Triassic successions exposed in a fold-and-thrust belt and an extensive mélange complex. Three formal lithostratigraphic units have been defined previously within the main Triassic succession in Timor (Niof, Aitutu and Babulu formations), with a fourth, the Wai Luli Formation, primarily Jurassic in age but extending down into the Triassic. The Niof Formation (Anisian to Ladinian, possibly also Early Triassic) is a fine-grained deepwater succession, succeeded conformably by the Aitutu and Babulu formations (Ladinian to Norian/Rhaetian), which were deposited contemporaneously, with the Aitutu Formation continuing locally into the Lower Jurassic. The Aitutu Formation consists of deep shelf limestones interbedded with shales and marls, while the Babulu Formation is a deltaic to turbiditic siliciclastic succession. The Late Triassic to Jurassic Wai Luli Formation is characterised by marine shales and marls.Informal stratigraphic units include the Cephalopod Limestone Facies, a Rosso Ammonitico-type deposit, which contains an extremely rich fossil fauna (particularly ammonoids) and ranges through the entire Triassic; and the Fatu Limestone and Pualaca Facies which consists of shallow to marginal marine carbonates (mud mounds, oolitic limestones and reefs) restricted to the Late Triassic. Facies diversity was low during the Early Triassic and Anisian, but became more pronounced from the Ladinian and continuing through the Late Triassic, probably as a consequence of renewed tectonic extension. Triassic extension was not associated with major volcanism, unlike a previous phase of extension in the Early Permian.The Cablac Limestone Formation, originally defined as a Miocene stratigraphic element, is now recognised to be at least partly Late Triassic–Early Jurassic in age, with lithologies comparable to parts of the Fatu Limestone. The stratigraphy of these shallow marine carbonate sequences is clearly in need of rigorous revision, but it is not yet possible to suggest appropriate redefined formations.  相似文献   

7.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

8.
中国青藏高原特提斯的形成与演化   总被引:4,自引:0,他引:4  
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶—志留纪结束,这个阶段的大洋我们称作"原特提斯"。中期从泥盆纪开始至石炭—二叠纪结束,通常称这个大洋为"古特提斯"。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作"新特提斯"。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑—阿尔金—北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖—怒江缝合带。  相似文献   

9.
An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan–Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous–Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous–Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian–Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko–Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.  相似文献   

10.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   


11.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

12.
闽西南晚三叠世文宾山组碎屑锆石U-Pb年龄及地质意义   总被引:4,自引:0,他引:4  
日益增多的资料表明中国东南沿海并不是后加里东地台,而是由不同地块拼贴而成。闽西南晚三叠世文宾山组具有类磨拉石沉积特征,其盆地沉积物碎屑锆石U-Pb年龄信息,可以为了解盆地源区组成及其变化及区域构造演变过程研究提供约束。闽西南晚三叠世文宾山组碎屑锆石形态学及U-Pb测年分析表明:(1)晚三叠世文宾山组物源复杂,其主要源区是闽西北隆起带;(2)闽西南晚三叠世具有大于2 500 Ma的太古宙的源区,华夏古陆可能存在太古宙陆核或东南沿海还存在另一古老基底;(3)980~1 190 Ma的碎屑锆石说明晚三叠世闽西南具有Grenville期物质来源,它们可能来自另外一个陆块,由于印支期古特提斯洋关闭与华夏地块拼接,并为晚三叠世盆地提供物源;(4)区内印支期岩浆岩带也是晚三叠世沉积的重要物源区。   相似文献   

13.
Abstract The Nadanhada terrane, a Jurassic disrupted terrane in Heilongjiang Province of China, is principally composed of Permo- Carboniferous limestone and greenstone, Triassic bedded chert and middle Jurassic siliceous shale, all enclosed within younger (presumably Late Jurassic- Early Cretaceous) clastics. Palaeontological and lithological characteristics and structural features of these formations are entirely identical to those of the Mino terrane of the Japanese Islands. Prior to opening of the Sea of Japan, these terranes formed a single superterrane together with the Western Sikhote-Alin terrane. Tectono-stratigraphic terranes very similar to the Nadanhada and Mino terranes are also found in the Ryukyu are, the Philippines and probably in Borneo. All these terranes constituted a belt of accretionary complexes during Late Jurassic and / or Early Cretaceous time along the eastern continental margin of Asia after completion of the Triassic collage of the Chinese continent.  相似文献   

14.
The Malay Peninsula lies on two continental blocks, Sibumasu and East Malaya, which are intruded by granitoids in two provinces: the Main Range and Eastern. Previous models propose that Permian–Triassic granitoids are subduction-related and syn-to post-collisional. We present 752 U–Pb analyses that were carried out on zircons from river sands in the Malay Peninsula; of these, 243 grains were selected for Hf-isotope analyses. Our data suggest a more complex Sibumasu–East Malaya collision history. 176Hf/177Hfi ratios reveal that Permian–Triassic zircons were sourced from three magmatic suites: (a) Permian crustally-derived granitoids, (b) Early-Middle Triassic granitoids with mixed mantle–crust sources, and (c) Late Triassic crustally-derived granitoids. This suggests three Permian–Triassic episodes of magmatism in the Malay Peninsula, two of which occurred in the Eastern Province. Although the exact timing of the Sibumasu–East Malaya collision remains unresolved, current data suggest that it occurred before the Late Triassic, probably in Late Permian–Early Triassic. Our data also indicate that Sibumasu and East Malaya basements are chronologically heterogeneous, but predominantly of Proterozoic age. Some basement may be Neoarchaean but there is no evidence for basement older than 2.8 Ga. Finally, we show that Hf-isotope signatures of Triassic zircons can be used as provenance indicators.  相似文献   

15.
The Turkish part of the Tethyan realm is represented by a series of terranes juxtaposed through Alpine convergent movements and separated by complex suture zones. Different terranes can be defined and characterized by their dominant geological background. The Pontides domain represents a segment of the former active margin of Eurasia, where back-arc basins opened in the Triassic and separated the Sakarya terrane from neighbouring regions. Sakarya was re-accreted to Laurasia through the Balkanic mid-Cretaceous orogenic event that also affected the Rhodope and Strandja zones. The whole region from the Balkans to the Caucasus was then affected by a reversal of subduction and creation of a Late Cretaceous arc before collision with the Anatolian domain in the Eocene. If the Anatolian terrane underwent an evolution similar to Sakarya during the Late Paleozoic and Early Triassic times, both terranes had a diverging history during and after the Eo-Cimmerian collision. North of Sakarya, the Küre back-arc was closed during the Jurassic, whereas north of the Anatolian domain, the back-arc type oceans did not close before the Late Cretaceous. During the Cretaceous, both domains were affected by ophiolite obduction, but in very different ways: north directed diachronous Middle to Late Cretaceous mélange obduction on the Jurassic Sakarya passive margin; Senonian synchronous southward obduction on the Triassic passive margin of Anatolia. From this, it appears that the Izmir-Ankara suture, currently separating both terranes, is composite, and that the passive margin of Sakarya is not the conjugate margin of Anatolia. To the south, the Cimmerian Taurus domain together with the Beydağları domain (part of the larger Greater Apulian terrane), were detached from north Gondwana in the Permian during the opening of the Neotethys (East-Mediterranean basin). The drifting Cimmerian blocks entered into a soft collision with the Anatolian and related terranes in the Eo-Cimmerian orogenic phase (Late Triassic), thus suturing the Paleotethys. At that time, the Taurus plate developed foreland-type basins, filled with flysch-molasse deposits that locally overstepped the lower plate Taurus terrane and were deposited in the opening Neotethys to the south. These olistostromal deposits are characterized by pelagic Carboniferous and Permian material from the Paleotethys suture zone found in the Mersin mélange. The latter, as well as the Antalya and Mamonia domains are represented by a series of exotic units now found south of the main Taurus range. Part of the Mersin exotic material was clearly derived from the former north Anatolian passive margin (Huğlu-type series) and re-displaced during the Paleogene. This led us to propose a plate tectonic model where the Anatolian ophiolitic front is linked up with the Samail/Baër-Bassit obduction front found along the Arabian margin. The obduction front was indented by the Anatolian promontory whose eastern end was partially subducted. Continued slab roll-back of the Neotethys allowed Anatolian exotics to continue their course southwestward until their emplacement along the Taurus southern margin (Mersin) and up to the Beydağları promontory (Antaya-Mamonia) in the latest Cretaceous–Paleocene. The supra-subduction ocean opening at the back of the obduction front (Troodos-type Ocean) was finally closed by Eocene north–south shortening between Africa and Eurasia. This brought close to each other Cretaceous ophiolites derived from the north of Anatolia and those obducted on the Arabian promontory. The latter were sealed by a Maastrichtian platform, and locally never affected by Alpine tectonism, whereas those located on the eastern Anatolian plate are strongly deformed and metamorphosed, and affected by Eocene arc magmatism. These observations help to reconstruct the larger frame of the central Tethyan realm geodynamic evolution.  相似文献   

16.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

17.
在位于班公湖-怒江结合带中段的西藏班戈县白拉乡拉纳沟一带,首次发现上三叠统确哈拉群与下伏岩系呈角度不整合接触。该接触关系的发现,证实在班公湖-怒江结合带内有古特提斯蛇绿岩的存在,说明以班公湖-怒江结合带为代表的新特提斯域是在古特提斯域基础上继承和发展起来的。  相似文献   

18.
本文利用LA-ICP-MS磷灰石裂变径迹(FT)和U-Pb双定年技术,结合锆石原位U-Pb测年结果,对出露于东天山南部雅满苏-彩霞山地区的侵入岩样品进行了系统分析。结果显示,这些样品形成于357-309Ma和-252Ma,裂变径迹年龄变化于304-118Ma。根据裂变径迹年龄和径迹长度分布对其进行热史反演,得到晚石炭世-早二叠世(320-280Ma)、中-晚三叠世(240-210Ma)和早白垩世(120-100Ma)三个主要冷却时期。综合分析认为,研究区的石炭纪和三叠纪侵入体在晚石炭世-早二叠世、中-晚三叠世和早白垩世期间经历过构造隆升。其中,晚石炭世-早二叠世的抬升是由康古尔洋闭合后区域进入碰撞造山阶段导致,中-晚三叠世的抬升主要与古特提斯洋闭合后松潘-甘孜地体、羌塘地体先后与亚欧板块南缘的碰撞增生有关,早白垩世的抬升事件主要受到班公湖-怒江洋俯冲闭合以及拉萨地体与羌塘地体的碰撞增生影响。此外,东天山不同部位经历了显著的差异性隆升,这一现象与区内各构造单元的非均匀性、分块性及其地质演化历史的差异性密切相关,同时还受到外部驱动力以及早期先存断裂构造活化的制约。  相似文献   

19.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   

20.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号