首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Paleoproterozoic Xuwujia gabbronorites in the northern margin of the North China craton occur as dykes, sills and small plutons intruded into khondalite (aluminous paragneisses, sedimentary protoliths deposited at ca. 2.0–1.95 Ga), and as numerous entrained bodies and fragments of variable scales in the Liangcheng granitoids (ca. 1.93–1.89 Ga). These gabbronoritic dykes are present at all locations where ca. 1.93–1.92 Ga ultra-high-temperature metamorphism is recorded in the khondalite. A gabbronorite sample from the Hongmiaozi dyke gives zircon 207Pb/206Pb mean ages of 1954 ± 6 Ma (core domains) and 1925 ± 8 Ma (rim domains). These ages, as well as previously reported ages, constrain the age of mafic magmatism to be at ca. 1.96–1.92 Ga (∼1.93 Ga). One sample from the Xigou gabbro intruded by the Liangcheng granitoids gives a zircon 207Pb/206Pb mean age of 1857 ± 4 Ma, which is interpreted as the age of a metamorphic overprint. The Xuwujia gabbronorites comprise mainly gabbronorite compositions, as well as some norite, olivine gabbronorite, monzonorite, quartz gabbronorite, and quartz monzonorite. Chemically, they are tholeiitic and can be divided into two groups: a high-Mg group (6.2–22.9 wt.% MgO) and a relatively low-Mg group (2.2–5.7 wt.% MgO). The high-Mg group shows negative Eu-anomalies (Eu/Eu* = 0.53–0.72), slight light rare earth element enrichment (La/YbN = 0.56–1.53), and small negative anomalies in high field-strength elements. The ?Nd (t = 1.93 Ga) values vary from +0.3 to +2.4. The low-Mg group shows varied Eu-anomalies (Eu/Eu* = 0.48–1.05), and is enriched in light rare earth elements (La/YbN = 1.51–11.98). The majority shows negative anomalies in high field-strength elements (e.g., Th, Nb, Zr, and Ti). Initial ?Nd (at 1.93 Ga) values for low-Mg gabbronorites vary from −5.0 to 0. The Xuwujia gabbronorites possibly experienced assimilation of crust, and fractional crystallization of initially olivine and hypersthene (the high-Mg group), and then olivine, clinopyroxene, and plagioclase (the low-Mg group). The slightly younger Liangcheng granitoids consist of garnet-bearing granite, granodiorite and quartz-rich granitic compositions. They are intermediate to felsic calc-alkaline rocks, thought to be derived from surrounding metasedimentary crust. Xigou gabbro could represent early cumulates. The granitoids have relatively high-Mg numbers (up to 54), and show some chemical affinities with the gabbronorites, which could have resulted from incorporation of gabbronoritic melts. The occurrence and chemical variations of the Xuwujia gabbronorites and Liangcheng granitoids can be interpreted to have resulted from crust–mantle interaction, with mingling and partial mixing of mantle (gabbronoritic) and crustal (granitic) melts. The Xuwujia gabbronorites originated from a mantle region with high potential temperatures (∼1550 °C), possibly associated with a plume or more likely a ridge-subduction-related mantle upwelling event. They could have had extremely high primary intrusion temperatures (up to 1400 °C). Emplacement of these magmas was likely responsible for the extensive crustal anatexis (Liangcheng granitoids) and the local ultra-high-temperature metamorphism. These sequences may have followed ca. 1.95 Ga continent–continent (arc?) juxtaposition and were themselves followed by significant regional uplift and exhumation in the northern margin of the North China craton.  相似文献   

2.
During the Ordovician, huge biological revolutions and environmental changes happened in Earth’s history, including the Great Ordovician Biodiversification Event, global cooling and so on, but the cause of these events remains controversial. Herein, we conducted a paired carbon isotopic analysis of carbonate (δ13Ccarb) and organic matter (δ13Corg) through the Ordovician in the Qiliao section on the Yangtze platform of South China. Our results showed that the δ13Ccarb trend of the Qiliao section can be correlated with local and global curves. The δ13Corg trend seems is less clear than the δ13Ccarb trend for stratigraphic correlations, but some δ13Corg positive excursions in the Middle and Upper Ordovician may be used for correlation studies. These carbon isotopic records may have global significance rather than local significance, revealing several fluctuations to the global carbon cycle during the Ordovician. Several known δ13Ccarb and δ13Corg negative and positive excursions have been recognised in this study, including the early Floian Negative Inorganic Carbon (δ13Ccarb) Excursion (EFNICE), as well as the early Floian Positive Organic Carbon (δ13Ccarb) Excursion, the mid-Darriwilian Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (MDICE), and the early Katian Guttenberg Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (GICE). These positive excursions and a smooth decline trend of δ13Corg values during the early to mid-Floian may imply multiple episodes of enhanced organic carbon burial that began at the early Floian stage, probably resulting in further decline in atmospheric pCO2 and then global cooling.  相似文献   

3.
The presence of the reversals of the geomagnetic field within the Brunhes is indicated by paleomagnetic stuides on Cenozoic volcanic rocks in the Leizhou Peninsula, loess strata and Quaternary marine sediments in the Pearl River Mouth basin in China. These regional reversals occured at 0.58±0.13 Ma, 0.45 Ma and 0.47—0.48 Ma respectively according to the results of K-Ar isotopic dating and climatostratigraphic and biostratigraphic analyses. The reversals equivalent to the Emperor Event is suggested.The reversals revealed in different regions with various lithologic characters in China prove that the Emperor Event is a global reversal event rather than a geomagnetic excursion, and its confirmation will permit a precise definition of the Middle/Late Pleistocene boundary.  相似文献   

4.
Doklady Earth Sciences - The age of carbonate rocks of the Tim Formation of the Oskol Group of the Kursk block, Sarmatia, is limited to 2.22–2.10 Ga on the basis of new data on δ13C and...  相似文献   

5.
Reliable paleomagnetic poles were calculated for 1.80–1.78 and 1.76–1.75 Ga as a result of the detailed paleomagnetic studies of the Late Paleoproterozoic igneous complexes and the North Ladoga region and Onega structure of the East European craton. According to the new paleomagnetic data, the final assembly of the Superior and Fennoscandia cratons in structure of the Paleoproterozoic Nuna/Columbia supercontinent began at 1.80–1.78 Ga and led to the formation of the Hudsonland megacontinent. Comparison of the coeval poles of 1.76–1.75 Ga of Fennoscandia and Volga–Sarmatia allows reconstruction of the oblique collision among these segments of the East European craton and substantiation of the final assembly at ~1.70 Ga.  相似文献   

6.
Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely corroded and replaced secondary calcic karstic rocks. The carbon, oxygen and strontium isotope compositions of the various karst rocks are analyzed systematically and compared to rocks without karst corrosion. The results indicate that(1) the Huanglong Formation in the eastern Sichuan Basin was a restricted bay supplied and controlled by freshwater in which mudmicrite and mud-dolomicrite exhibit low δ13C and δ18O values and high 87Sr/86 Sr ratios;(2) all types of karstic rocks in the paleokarst reservoirs of the Huanglong Formation in the research area are affected by atmospheric freshwater with the δ13C and δ18O values and 87Sr/86 Sr ratios in the original formation approaching those of atmospheric freshwater, which reflects ancient hydrological conditions, fluid properties, isotopic source and the fractionation effect;(3) the intensely corroded and replaced secondary limestone is affected by a variety of diagenetic fluids, often reflected by δ13C and δ18O values, while the 87Sr/86 Sr ratios exhibit the strong degree of the corrosion;(4) after comparing the 87Sr/86 Sr ratios of each type of karst rock, the diagenetic fluids are determined to be mainly atmospheric freshwater, and depending on the strength of corrosion, and the low 87Sr/86 Sr ratio fluids in the layer will participate in the karst process. The carbon, oxygen, and strontium isotopes of different karstic reservoirs can provide meaningful geochemical information for forecasting and evaluating the development and distribution rules of the Huanglong Formation at the margin of the eastern Sichuan Basin in time and space.  相似文献   

7.
《Precambrian Research》2004,132(4):327-348
The Saramta massif in the Paleoproterozoic Sharyzhalgai complex, the southwestern margin of the Siberian craton, is mainly composed of spinel-peridotites with garnet-websterites; it is enclosed within granitic gneisses and migmatites with mafic intercalations of granulite-facies grade. The garnet-websterites occur as lenses or layers intercalated within spinel-harzburgite and spinel-lherzolite. They consist mainly of clinopyroxene (Cpx), garnet (Grt), and orthopyroxene (Opx): Grt often includes Cpx, Opx, and pargasite (Prg). Opx also occurs as kelyphite with plagioclase (Pl), spinel, olivine, Prg, and biotite. Relationships between textures and chemical compositions of these minerals suggest the following PT stages: stage 1 (pre-peak), 0.9–1.5 GPa at 640–780 °C; stage 2 (peak), 2.3–3.0 GPa at 920–1030 °C as the minimum estimate; and stage 3 (post-peak), 750–830 °C at 0.5–0.9 GPa. Finally, the garnet-websterites are veined with lower amphibolite- to greenschist-facies minerals (stage 4).These results suggests that the Saramta massif was carried to depths of c. 100 km by subduction, and metamorphosed under eclogite-facies conditions in the Paleoproterozoic, despite the commonly held view that high geothermal gradients in those times would have prevented such deep subduction. Paleoproterozoic plate subduction at the southwestern margin of the Siberian craton might have caused subduction-zone magmatism and mantle metasomatism similar to those in the Phanerozoic.  相似文献   

8.
The Palaeoproterozoic Magondi Supergroup lies unconformably on the Archaean granitoid-greenstone terrain of the Zimbabwe Craton and experienced deformation and metamorphism at 2.06–1.96 Ga to form the Magondi Mobile Belt. The Magondi Supergroup comprises three lithostratigraphic units. Volcano-sedimentary rift deposits (Deweras Group) are unconformably overlain by passive margin, back-arc, and foreland basin sedimentary successions, including shallow-marine sedimentary rocks (Lomagundi Group) in the east, and deeper-water shelf to continental slope deposits in the west (Piriwiri Group). Based on the upward-coarsening trend and presence of volcanic rocks at the top of the Piriwiri and Lomagundi groups, the Piriwiri Group is considered to be a distal, deeper-water time-equivalent of the Lomagundi Group. The Magondi Supergroup experienced low-grade metamorphism in the southeastern zone, but the grade increases to upper greenschist and amphibolite facies grade to the north along strike and, more dramatically, across strike to the west, reaching upper amphibolite to granulite facies in the Piriwiri Group.  相似文献   

9.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

10.
《Gondwana Research》2013,23(3-4):1091-1101
A pronounced negative δ13C shift that can be potentially correlated with the Shuram excursion has been reported from middle Ediacaran strata in the Yangtze Gorges area of South China. Whether it represents a perturbation to the ocean carbon cycle or a record of post-depositional alteration is still open to debate. Resolving this controversy will help clarify if δ13C variations can be used for chemostratigraphic correlation of Ediacaran successions. To further understand the regional pattern of Ediacaran carbon isotopic excursions in the Yangtze platform, we carried out a detailed δ13C analysis of the Lianghong section in the western part of the Yangtze platform. The Ediacaran System at Lianghong is overlain by the Maidiping Formation yielding early Cambrian small shelly fossils and underlain by the Cryogenian Lieguliu Formation diamictite and tuffaceous siltstones. It comprises the Guanyinya and Hongchunping formations, which have been traditionally correlated with the Doushantuo and Dengying formations, respectively, in the Yangtze Gorges area. Two negative δ13C excursions occur in the Lianghong section. The lower one at the uppermost Guanyinya Formation, with a nadir at − 8.6‰, may be correlated with the pronounced negative δ13C shift (EN3) in the uppermost Doushantuo Formation in the Yangtze Gorges area and possibly with the well known Shuram event in Oman. The upper negative δ13C excursion occurs in the upper Hongchunping Formation and may be correlated with negative excursions (EN4) near the Ediacaran/Cambrian boundary. Other negative δ13C excursions (e.g., EN1 and EN2) are not expressed in the Lianghong section because the lower Guanyinya Formation is dominated by siliciclastic rocks. Combined with previously published Ediacaran δ13C profiles, our results indicate that the EN3 excursion (likely a Shuram equivalent) may occur widely in South China and can be a useful chemostratigraphic feature for regional and global stratigraphic correlation.  相似文献   

11.
12.
《地学前缘(英文版)》2020,11(5):1821-1840
New,integrated petrographic,mineral chemistry,whole rock geochemical,zircon and titanite UPb geochronology,and zircon Hf isotopic data from the Montezuma granitoids,as well as new geochemical results for its host rocks represented by the Corrego Tingui Complex,provides new insights into the late-to post-collisional evolution of the northeastern Sao Francisco paleocontinent.U-Pb zircon dates from the Montezuma granitoids spread along the Concordia between ca.2.2 Ga to 1.8 Ga and comprise distinct groups.Group I have crystallization ages between ca.2.15 Ga and 2.05 Ga and are interpreted as inherited grains.Group II zircon dates vary from 2.04 Ga to1.9 Ga and corresponds to the crystallization of the Montezuma granitoids,which were constrained at ca.2.03 Ga by the titanite U-Pb age.Inverse age zoning is common within the ca.1.8 Ga Group III zircon ages,being related to fluid isotopic re-setting during the Espinhaco rifiting event.Zircon ε_(Hf)(t) analysis show dominantly positive values for both Group I(-4 to+9) and Ⅱ(-3 to+8) zircons and T_(DM2) model ages of 2.7-2.1 Ga and 2.5-1.95 Ga,respectively.Geochemically,the Montezuma granitoids are weakly peraluminous to metaluminous magnesian granitoids,enriched in LILES and LREE,with high to moderate Mg#and depleted in some of the HFSE.Their lithochemical signature,added to the juvenile signature of both inherited and crystallized zircons,allowed its classification as a shoshonitic high Ba-Sr granitoid related to a late-to post-collisional lithosphere delamination followed by asthenospheric upwelling.In this scenario,the partial melting of the lithospheric mantle interacted with the roots of an accreted juvenile intra-oceanic arc,being these hybrid magma interpreted as the source of the Montezuma granitoids.The Corrego Tingui Complex host rocks are akin to a syn-to late-collisional volcanic arc granitoids originated from the partial melting of ancient crustal rocks.The results presented in this study have revealed the occurrence of juvenile rocks,probably related to an island arc environment,that are exotic in relation to the Paleo-to Neoarchean crust from the Sao Francisco paleocontinent's core.  相似文献   

13.
431 oriented samples were collected from 27 dolerite dykes at 17 sites, belonging to 2.95, 2.65, and 1.90 Ga swarms, that trend SE, E and NE, respectively from the Bushveld Igneous Complex into the eastern Kaapvaal Craton (ages determined by Olsson et al., 2010; Olsson in Söderlund et al., 2010). Samples were analyzed for paleomagnetism and also anisotropy of magnetic susceptibility (AMS). For the 2.95 Ga SE-trending dykes high temperature/coercivity ‘P’ component has unblocking temperatures up to 590 °C and coercivity 40–90 mT and demonstrate SSW declination and intermediate positive inclination. Based on positive contact and conglomerate tests we argue for a primary origin of this component. The paleopole (BAD), calculated from ‘P’ component, does not correspond to any of the previously obtained Archean–Paleoproterozoic paleopoles for the Kaapvaal Craton, and represents a new key pole for 2.95 Ga. The high-coercivity ‘H’ component for the 2.65 Ga-old E-trending dykes has a SSW declination and steep positive inclination. Paleomagnetic pole (RYK), recalculated from this component, is close to the paleopoles, obtained by Wingate (1998) and Strik et al. (2007) for 2.78 Ga Ventersdorp volcanics. The third group, NE-trending dykes of the 1.90 Ga Black Hill swarm demonstrate an ‘M’ component with dual polarity high-coercivity component with SSE-declination and negative intermediate inclination. The paleopole (BHD), calculated from this component is close to the 1.87 Ga pole of the Kaapvaal Craton obtained by Hanson et al. (2004). Overprint directions include a very well developed thermo-chemical overprint (Dec = 329° Inc = −36°), which is believed to be associated with a ∼0.18 Ga regional ‘Karoo’ thermal event.  相似文献   

14.
The Birim rocks of the West African craton comprise belts of greenschist- to amphibolite-grade gneiss and schist, and subparallel basins of greenschist-grade phyllite of volcaniclastic and epiclastic origin, which were intruded by igneous rocks. The granitoids intruded between 2213 and 2060 Ma and overlap with the volcaniclastic units dated between 2211 and 2064 Ma. The simultaneous occurrence of the magmatic events and irregular distribution of the rock ages hamper the formulation of a stratigraphic succession. SHRIMP spot analyses were done on older cores, crystals and rims from 23 rocks from the Bolé-Wa region in west-central Ghana. The crystallization ages range from 2195 to 2118 Ma, the inherited ages from 2876 to 2130 Ma, and metamorphic ages from 2114 to 2090 Ma. Aided by metamorphic, structural and chemical studies an older geotectonic cycle (2195–2150 Ma), containing the Dole and Guropie Suite and Bolé Group, was established. These units were subjected to several orthogonal and shear deformation events. These events were followed by the contemporaneous Sawla calc-alkaline monzonitic plutonism (2132–2126 Ma) and deposition of the epiclastic Maluwe Group (2137–2125 Ma) of calc-alkaline felsic to tholeiitic volcanic origin. Deformation of the basin beds was succeeded by the intrusion of the Tanina Suite granitoids of 2122–2120 Ma, which, themselves, were deformed prior to 2119 Ma. At 2118 Ma syenite and gabbro intruded along conjugate extension fractures. The gabbro and syenite of the Wakawaka Suite were only affected by three events of brittle strike-slip faulting. The first had significant displacement along NNE- to NE-directed shear zones, while the latter only formed conjugate joint systems with limited transport. Palaeo- to Neoarchaean cores, the oldest yet reported in the Baoulé Mossi domain, are restricted to the gneissic Dole Suite biotite granites. The presence of Dole-, Guropie-, Sawla-, and Tanina-aged older cores and grains in younger rocks reflects continuous reworking of the developing crust during successive magmatic episodes. Zircon rim growth between 2105 and 2090 Ma indicates posttectonic crustal thickening. The low Rb/Sr Ro of ~0.7032 of gabbro and monzonite, and the recycling of the Birim-age crust confirm the primary and juvenile nature of the West African craton after ~2195 Ma. With the various ages obtained, it was possible to link deposition, magmatism and deformation to crustal processes, and establish the cyclic geotectonic evolution in the West Africa craton (individual basin opening and closure) over time as part of an intraoceanic arc–back-arc basin system.  相似文献   

15.
Vicia villosa is an annual legume plant,and is mainly used for green manure by farmers in southwest China.Field growth experiments were performed on six plots.The concentrations of mineral nutrients and soluble sugar,and the changes of carbon and nitrogen isotopic composition within and among organs of Vicia were deter- mined.Significant differences in legume growth were found in response to soil type and its moisture conditions.The Vicia villosa was relatively well adapted to growth in limestone soils than sandstone soils.The distribution of sugar concentrations andδ1 3C-differences between roots and leaves indicate that the translocation of sugars from leaves to roots may be restricted by soil drought.Therefore,there was an inhibition of Pi distribution from roots to leaves, resulting in over optimum threshold of N/P ratio.Those may originate from the feedback regulation in the legume, where soluble sugar could not be distributed from leaves to roots.The results ofδ1 5N values in tissues suggest that there should be different preferential use of nitrogen resource by legume during the formation of nodules:before nodule formation the legume preferentially utilizes inorganic nitrogen from soils,but afterwards the nitrogen should be mainly from N2-fixation.Our results indicate that the lack of nodulation development,except for S2,should be ascribed to the factor controlling bi-direction nutrient transfer,which should be efficiency of establishment symbiosis with arbuscular mycorrhiza before nodulation formation.It is predicted that the species of Vicia villosa should be a legume associated with dual symbiosis with rhizobia and mycorrhiza.  相似文献   

16.
Carbon and oxygen isotope compositions has been studied in dolomites of the Syukeevo gypsum deposit located in the Eastern Russian Plate. Values of δ13C in the dolomites vary from 0.3 to 6.6 ‰; δ18O, from 28.0 to 36.6‰. It is shown that the dolomites were formed in the epicontinental evaporitic basin in different paleoecological settings. This led to the formation of diverse lithological types of dolomites with peculiar isotope-geochemical features.  相似文献   

17.
18.
The stable carbon and hydrogen isotope composition of higher plant-derived long chain n-alkanes (δ13Cn-alkanes and δDn-alkanes) from 45 surface soil samples (within well characterized vegetation zones) from eastern China (18°N–50°N) are reported. The weighted average δDn-alkanes value for n-C27, n-C29 and n-C31 in the samples and the annual average δD of meteoric water recorded at 12 weather stations proximal to the sampling sites show similar spatial variations. The δD of n-alkanes shows a gradual depletion in value with increasing latitude. The results demonstrate that, on a large spatial scale, the δD values of long chain n-alkanes derived from higher plants have the potential to record the δD of meteoric water, although many other factors can also influence the isotope values. There appears to be no apparent relationship between the δD of the n-alkanes extracted from the surface soil and the overlying vegetation type (i.e. forest/grassland or C3/C4 composition). Therefore, palaeoenvironmental studies utilizing δDn-alkanes from higher plant-derived material in geological samples have the potential to provide additional information with regard to the past hydrological cycle.  相似文献   

19.
20.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. Three types of metamorphic wallrocks interbedded with the BIF bands are identified, including plagioclase gneisses and leptynites, garnet-bearing gneisses and amphibolites. Protolith reconstruction suggests that the protoliths of the plagioclase gneisses and leptynites are mainly graywackes with minor contribution of pelitic materials, the garnet-bearing gneisses are Fe-rich pelites contaminated by clastics, and the amphibolites are tholeiitic rocks. Trace elements of La, Th, Sc and Zr of the plagioclase gneisses and leptynites and the garnet-bearing gneisses support that these meta-sedimentary rocks were probably derived from recycling of Archean rocks with felsic and mafic materials differentiated into different rock types. 207Pb/206Pb ages of detrital zircons from the meta-sedimentary rocks concentrate at 2.7–3.0 Ga, confirming their derivation from the Archean rocks. The presence of several Paleoproterozoic detrital zircons (2240 to 2246 Ma), however, also suggests minor involvement of Paleoproterozoic materials. The Archean detrital zircons have εHf(t) values varying from − 0.7 to 7.6, which mainly fall between the 3.0 Ga and 3.3 Ga average crustal evolution lines on the age vs. εHf(t) diagram, further illustrating that the rocks providing materials for the meta-sedimentary rocks mainly originated from partial melting of a Mesoarchean crust. This is strongly supported by their crust-like trace element distribution patterns (such as Nb, Ta, P and Ti depletion) and ancient Nd depleted mantle model ages (TDM = 2.9–3.4 Ga). In addition, the remarkably high εHf(t) values (7.5 to 9.3) of the Paleoproterozoic detrital zircons constrain the Paleoproterozoic materials to originate from a depleted mantle. The amphibolites show low SiO2 (46.5 to 52.8 wt.%) and high MgO (5.68 to 10.9 wt.%) contents, crust-like trace element features and low εNd(t) values (− 4.5 to − 0.3), suggesting that these ortho-metamorphic rocks were mainly derived from subcontinental lithospheric mantle with some contamination by Archean crustal materials. Since an intra-continental environment was required for the formation of the above metamorphic rocks, these rocks not only confine the depositional environment of the Changyi BIF to be an intra-continental rift, but also support the rifting processes of the eastern NCC during Paleoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号