首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmg olivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmg olivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmg olivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmg olivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2). The lamrophyres, basanites and melanephelinites associated with the Deccan Volcanic Province entrain both ultramafic and mafic xenoliths. The ultramafic group is represented by (i) spinel lherzolites, harzburgites, and (ii) pyroxenites. Single pyroxene granulite and two pyroxene granulites constitutes the mafic group. Temperature estimates for the West Coast xenoliths indicate equilibration temperatures of 500–900°C while the pressure estimates vary between 6–11 kbar corresponding to depths of 20–35 km. This elevated geotherm implies that the region is characterized by abnormally high heat flow, which is also supported by the presence of linear array of hot springs along the West Coast. Spinel peridotite xenoliths entrained in the basanites and melanephelinites from the Kutch show low equilibrium temperatures (884–972°C). The estimated pressures obtained on the basis of the absence of both plagioclase and garnet in the xenoliths and by referring the temperatures to the West Coast geotherm is ∼ 15 kbar (40–45 km depth). The minimum heat flow of 60 to 70 mW/m2 has been computed for the Kutch xenolith (Bhujia hill), which is closely comparable to the oceanic geotherm. Xenolith studies from the West Coast and Kutch indicate that the SCLM beneath is strongly metasomatised although the style of metasomatism is different from that below the Dharwar Craton.  相似文献   

2.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

3.
It is known that the РТ parameters of diamond-bearing kimberlite xenoliths correspond to subductive paleogeotherms lying between the 36 and 41 mW/m2 conductive models. There are some studies showing the correlation of diamond ability with oxygen fugacity and the fluid composition of mantle xenoliths. The most diamondiferous samples correspond to the water compositions of the calculated O–H–C fluid with a minimum atomic carbon content in it. From the calculations it follows that the fluid carbon atomic content increases with a temperature increase and with the pressure decreasing. The most minor C contents have the 35 mW/m2 conductive model in comparison with the 40 and 45 mW/m2 models. As a result, it is possible to conclude that the low temperature fields (less than 1100°C) of the “cold” geotherms have the highest diamondiferous ability.  相似文献   

4.
Tauranga low-temperature geothermal system (New Zealand) has been used for the last 40 years for direct uses including space heating, bathing and greenhouses. Warm-water springs in the area are between 22 and 39 °C, with well temperatures up to 67 °C at 750 m depth. A heat and fluid flow model of the system is used to determine reservoir properties and assess thermal potential. The model covers 130 km by 70 km to 2 km depth, and was calibrated against temperatures measured in 17 wells. Modelling shows that to maintain the observed primarily conductive heat flow regime, bulk permeability is ≤2.5?×?10?14 m2 in sedimentary cover and ≤1?×?10?16 m2 in the underlying volcanic rocks. The preferred model (R 2?=?0.9) corresponds to thermal conductivities of 1.25 and 1.8 W/m2 for sedimentary and volcanic rocks, respectively, and maximum heat flux of 350 mW/m2. The total surface heat flow is 258 MW over 2,200 km2. Heat flux is highest under Tauranga City, which may be related to inferred geology. Model simulations give insights into rock properties and the dynamics of heat flow in this low-temperature geothermal system, and provide a basis to estimate the effects of extracting hot fluid.  相似文献   

5.
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different PT ranges for eclogites and garnet pyroxenites with average PT conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated PT ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust.  相似文献   

6.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

7.
Mineralogical, petrochemical, and geochemical characteristics and the crystallization conditions (T, P, and \(f_{O_2 } \)) of mantle xenoliths in alkaline basalts from the Baikal-Mongolia area indicated: (1) that the compositional heterogeneity of the mantle beneath southeastern and central parts of Mongolia, the Khamar-Daban, and Transbaikalia reflects variations in the degree of melting of the primitive mantle (10% and more for southeastern Mongolia, 0–15% for central Mongolia, and 0–10% for Transbaikalia and the Khamar-Daban) and, perhaps, also the compositional heterogeneity of the mantle source material; (2) the dependence of the concentrations of Y, Zr, Ti, Sc, and REE (from Nd to Lu) on the contents of major oxides (Al2O3 and MgO) and on their ratios (MgO/SiO2 and Al2O3/MgO) in the xenoliths testifies that the distribution of trace elements and REE in the mantle was controlled by its partial melting; (3) the thermal state of the mantle varies beneath the Vitim area (geothermal gradient TG = 9.4 ± 0.3°C/km), central Mongolia (TG = 10.2 ± 0.2°C/km), and southeastern Mongolia (TG = 9.4 ± 0.3°C/km); (4) the Pb-Pb model age of the material represented by the primitive mantle xenoliths is 4457 ± 12 Ma and is consistent with the evaluated duration of the development of the core and its complementary primitive mantle calculated for the U-Th-Pb system (Galer and Golddstein, 1996).  相似文献   

8.
We performed thermodynamic calculations based on model and natural peridotitic compositions at pressure and temperature conditions relevant to the Earth’s upper mantle, using well-established free energy minimization techniques. The model is consistent with the available experimental data in Cr-bearing peridotitic systems and can therefore be used to predict phase relations and mineral compositions in a wide range of realistic mantle compositions. The generated phase diagrams for six different bulk compositions, representative of fertile, depleted and ultra-depleted peridotitic mantle, shown that the garnet + spinel stability field is always broad at low temperatures and progressively narrows with increasing temperatures. In lithospheric sections with hot geotherms (ca. 60 mW/m2), garnet coexists with spinel across an interval of 10–15 km, at ca. 50–70 km depths. In colder, cratonic, lithospheric sections (e.g. along a 40 mW/m2 geotherm), the width of the garnet–spinel transition strongly depends on bulk composition: In fertile mantle, spinel can coexist with garnet to about 120 km depth, while in an ultra-depleted harzburgitic mantle, it can be stable to over 180 km depth. The formation of chromian spinel inclusions in diamonds is restricted to pressures between 4.0 and 6.0 GPa. The modes of spinel decrease rapidly to less than 1 vol % when it coexists with garnet; hence, spinel grains can be easily overlooked during the petrographical characterization of small mantle xenoliths. The very Cr-rich nature of many spinels from xenoliths and diamonds from cratonic settings may be simply a consequence of their low modes in high-pressure assemblages; thus, their composition does not necessarily imply an extremely refractory composition of the source rock. The model also shows that large Ca and Cr variations in lherzolitic garnets in equilibrium with spinel can be explained by variations of pressure and temperature along a continental geotherm and do not necessarily imply variations of bulk composition. The slope of the Cr# [i.e. Cr/(Cr + Al)mol] isopleths in garnet in equilibrium with spinel changes significantly at high temperatures, posing serious limitations to the applicability of empirical geobarometric methods calibrated on cratonic mantle xenoliths in hotter, off-craton, lithospheric mantle sections.  相似文献   

9.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

10.
Coupled thermal‐mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (≥ 450 km) at 1 cm yr?1, and a slope‐dependent erosion rate. The model crust is layered with respect to thermal and rheological properties — the upper crust (0–20 km) follows a wet quartzite flow law, with heat production of 2.0 μW m?3, and the lower crust (20–35 km) follows a modified dry diabase flow law, with heat production of 0.75 μW m?3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T≥600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro‐side of the system, and is driven by a depth‐dependent pressure gradient that is facilitated by the development of a temperature‐dependent low viscosity horizon in the mid‐crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post‐convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust‐related exhumation on the flanks. Velocities in the pro‐side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro‐side flank of the plateau leads to ‘ductile extrusion’ of the channel flow zone. The exhumed channel displays apparent normal‐sense offset at its upper boundary, reverse‐sense offset at its lower boundary, and an ‘inverted’ metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P–T–t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen.  相似文献   

11.
Concentrations of helium isotopes were measured in gas and water samples from 28 thermal mineral springs in Tuva and adjacent regions of Buryatia and Gorny Altai. It is shown that fluids from 16 springs are rich in mantle helium (4–35%). With regard to the air contamination of the samples, the corrected ratios of helium isotopes (Rcor = 3He/4He) in these springs vary from 5.3 × 10–8 to 422 × 10–8. Using these Rcor values, we estimated the heat flow; these estimates were then applied to calculate the deep-level temperatures and thickness of thermal lithosphere. According to these parameters, the Tuva region is divided into two parts. Eastern Tuva (from ~96° E to the boundary with Buryatia) is characterized by abnormal helium isotope ratios and heat flow indicating the intense heating of the Earth’s crust in eastern Tuva: At a depth of 50 km, a temperature reaches 1000–1200 °C, and the thickness of thermal lithosphere is reduced to 70–50 km. This testifies to a rift process west (probably, up to 96° E) of the Baikal Rift Zone. In western Tuva, the average heat flow is much lower, ~45–50 mW/m2, which is commensurate with that in the Altai–Sayan folded area as a whole. The deep-level temperatures here are twice lower, and the lithosphere thickness increases to 150 km.  相似文献   

12.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

13.
We studied diamonds from a 2.697–2.700 Ga Wawa metaconglomerate (Southern Superior craton) and identified mineral inclusions of high-Cr, low-Ca pyrope garnet, low-Ti Mg-chromite, olivine (Fo93), and orthopyroxene (En94). The diamonds have δ13C of ?2.5 to ?4.0 ‰ and derive from the spinel-garnet and garnet facia of harzburgite. Geothermobarometry on non-touching, coexisting garnet-olivine and garnet-orthopyroxene pairs constrains the maximum geothermal gradient of 41 mW/m2 for the Neoarchean and a minimum lithosphere thickness of 190 km. The depleted harzburgitic paragenesis equilibrated at a relatively cold geotherm suggests the presence of a pre-2.7 Ga diamondiferous cratonic root beneath the northern Wawa terrane or the Opatica terrane of the Southern Superior craton, i.e., beneath terranes identified as sources for the metaconglomerate diamonds. Geophysical surveys, geothermal data, and petrology of mantle xenoliths emplaced in the Proterozoic-Mesozoic trace evolution of the mantle thermal regime and composition from the Archean to present. The root was thinned down to 150 km by the Jurassic, when the mantle was heated to 41–42 mW/m2. The diamondiferous root destruction was accompanied by more significant heating and was complete by 1.1 Ga in areas adjacent to the Midcontinent Rift. The geometry of the current high-velocity root and spatial correlations with boundaries of crustal terranes that docked to the nuclei of the Superior protocraton in the Neoarchean suggest that the root destruction in the Southern Superior may have been associated with tectonic erosion, craton amalgamation, and ensuing ingress of asthenospheric fluids.  相似文献   

14.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   

15.
Longitudinal wave velocities (V P ) in rocks were measured experimentally in dunite (olivinite) and serpentinite at a water pressure of 300 MPa and temperatures of 20–850°C. It is shown that the strong decrease in V P in dunite (by ~3 km/s) observed within the range of 400–800°C results from penetration of water into rock along microfractures and from the formation of hydrous minerals (mostly serpentine) along the boundaries of mineral grains as a result of water–olivine interaction. It is suggested that serpentinization or the formation of similar hydrous minerals in olivine-rich mantle rocks under the influence of deep fluids may result in the formation of zones of low-velocity elastic waves in the upper mantle at great depths (~100 km).  相似文献   

16.
Oxygen fugacity (fO2) affects melting, metasomatism, speciation of C–O–H fluids and carbon-rich phases in the upper mantle. fO2 of deep off-craton mantle is poorly known because garnet-peridotite xenoliths are rare in alkali basalts. We examine the redox and thermal state of the lithospheric mantle between the Siberian and North China cratons using new Fe3+/ΣFe ratios in garnet and spinel obtained by M?ssbauer spectroscopy, major element data and PT estimates for 22 peridotite xenoliths as well as published data for 15 xenoliths from Vitim, Russia. Shallow spinel-facies mantle is more oxidized than deep garnet peridotites (average, ?0.1 vs. ?2.5 ΔlogfO2(FMQ)). For intermediate garnet–spinel peridotites, fO2 estimates from spinel-based oxybarometers are 1.5–3.2 ΔlogfO2(FMQ) lower than those from garnet-based oxybarometers. These rocks may be out of phase and chemical inter-mineral equilibrium because the spinel–garnet reaction and concomitant changes in mineral chemistry do not keep up with PT changes (e.g., lithospheric heating by recent volcanism) due to slow diffusion of trivalent cations and because gar-, gar-spl and spl-facies rocks may coexist on centimeter–meter scale. The spinel-based fO2 estimates may not be correct while garnet-based fO2 values provide conditions before the heating. The T (780–1,100?°C) and fO2 ranges of the Vitim xenoliths overlap those of coarse garnet and spinel cratonic peridotites. However, because of a higher geothermal gradient, the deepest Vitim garnet peridotites are more reduced (by 0.5–2.0 ΔlogfO2(FMQ)) than cratonic garnet peridotites at similar depths, and the “water maximum” conditions (>80?% H2O) in the off-craton mantle exist in a more shallow and narrow depth range (60–85?km) than in cratonic roots (100–170?km). The base of the off-craton lithospheric mantle (≥90?km) at 2.5?GPa and 1,150?°C has fO2 of ?3.0 ?logfO2(FMQ), with dominant CH4 and H2O and minor H2 in the fluid. Melting near the base of off-craton mantle lithosphere may be induced by increasing water share in migrating fluids due to oxidation of methane.  相似文献   

17.
《Gondwana Research》2014,25(2):668-684
Studies on lower crustal and mantle xenoliths as well as geophysical data provide important information on the cratonic lithosphere. While geothermobarometric calculations of a majority of mantle xenoliths are in agreement with the typically low surface heat flow values of a craton (~ 40 mW/m2), PT estimates for lower crustal xenoliths deviate significantly from the cratonic geotherms. Independent from the individual cratonic history, the temperatures are ~ 200–300 °C higher than what is expected at the base of the lower crust (~ 500–600 °C at ~ 1.3–1.6 GPa). Possible explanations may be a lack of equilibration to the cratonic geotherm or a relatively recent localized heat input. The presence of granulitic rocks under eclogite-facies conditions which are expected to prevail in the lower cratonic crust has consequences for the interpretation of geophysical rock properties. A mafic granulite which has been preserved under eclogite-facies conditions has densities and P-wave velocities similar to a felsic composition equilibrated to eclogite-facies conditions. Furthermore, phase diagrams calculated from xenolith bulk compositions demonstrate that eclogitization at relatively high temperatures as required for delamination of continental crust can only be triggered at significantly higher pressures than lithostatic at the base of the lower crust. As long as PT conditions and the rock composition entail the assemblage to be granulitic, the addition of fluid at temperatures above 800 °C will not result in eclogitization, but rather in melt generation. This can also lead to an increase in density of up to 3%, however, this is strongly dependent on the amount of water saturation.  相似文献   

18.
The Gibeon Kimberlite Province of southern Namibia comprises more than 75 group 1 kimberlite pipes and dykes. From the Gibeon Townsland 1 pipe, 38 upper mantle xenoliths (23 garnet lherzolites and 15 garnet harzburgites) were collected and minerals were analysed by electron microprobe for major elements. Pressures and temperatures of crystallisation for xenoliths with either coarse equant, porphyroclastic and mosaic-porphyroclastic textures were estimated by a number of combinations of geothermometers and geobarometers judged to be reliable and accurate for peridotites by Brey and Köhler (1990): The P-T estimates for equilibrated xenoliths agree within the errors of the methods and plot within the stability field of graphite. The P-T values for coarse equant xenoliths fall close to a geothermal gradient of about 44?mW/m2 within a very restricted pressure range. The porphyroclastic xenoliths yield similar and higher temperatures at similar depths. In these xenoliths Ca in orthopyroxene and Ca in olivine increase towards the rims and are high in the neoblasts indicating a stage of transient heating at depth. The mosaic-porphyroclastic xenolith minerals yield the highest temperatures, are unzoned and indicate internal mineral equilibrium. The depth of origin for the xenoliths from Gibeon Townsland 1 ranges from 100 to 140 km. The “cold”, coarse equant peridotites are relatively enriched garnet lherzolites with comparatively (to the “hot” peridotites) low modal orthopyroxene contents, whereas the “hot”, mosaic-porphyroclastic peridotites are depleted garnet harzburgites with high modal amounts of orthopyroxene. This is opposite to the findings for peridotites from the Kaapvaal craton where the cold peridotites are depleted harzburgites with high modal orthopyroxene and many of the hot peridotites are fertile lherzolites with low modal abundance of orthopyroxene. We present a model in which the high temperature, depleted garnet harzburgites are equated to the cold, coarse equant peridotites from the Kaapvaal craton. It is envisaged that this material was detached and transported laterally by an upwelling, deflected plume.  相似文献   

19.
Based on the simultaneous inversion of unique ultralong-range seismic profiles Craton, Kimberlite, Meteorite, and Rift, sourced by peaceful nuclear and chemical explosions, and petrological and geochemical data on the composition of xenoliths of garnet peridotite and fertile primitive mantle material, the first reconstruction was obtained for the thermal state and density of the lithospheric mantle of the Siberian craton at depths of 100–300 km accounting for the effects of phase transformation, anharmonicity, and anelasticity. The upper mantle beneath Siberia is characterized by significant variations in seismic velocities, relief of seismic boundaries, degree of layering, and distribution of temperature and density. The mapping of the present-day lateral and vertical variations in the thermal state of the mantle showed that temperatures in the central part of the craton at depths of 100–200 km are somewhat lower than those at the periphery and 300–400°C lower than the mean temperature of tectonically younger mantle surrounding the craton. The temperature profiles derived from the seismic models lie between the 32.5 and 35 mW/m2 conductive geotherms, and the mantle heat flow was estimated as 11–17 mW/m2. The depth of the base of the cratonic thermal lithosphere (thermal boundary layer) is close to the 1450 ± 100°C isotherm at 300 ± 30 km, which is consistent with published heat flow, thermobarometry, and seismic tomography data. It was shown that the density distribution in the Siberian cratonic mantle cannot be described by a single homogeneous composition, either depleted or enriched. In addition to thermal anomalies, the mantle density heterogeneities must be related to variations in chemical composition with depth. This implies significant fertilization at depths greater than 180–200 km and is compatible with the existence of chemical stratification in the lithospheric mantle of the craton. In the asthenosphere-lithosphere transition zone, the craton root material is not very different in chemical composition, thermal regime, and density from the underlying asthenosphere. It was shown that minor variations in the chemical composition of the cratonic mantle and position of chemical (petrological) boundaries and the lithosphere-asthenosphere boundary cannot be reliably determined from the interpretation of seismic velocity models only.  相似文献   

20.
Electrical conductance of lower crust and mantle rocks samples from the Tarim and Tien Shan junction zone were measured in a laboratory under P-T conditions determined on the basis of thermobarometry data. The geothermic curve for the moment of xenolith delivery (K - \rlap- P)(K - \rlap{--} P) corresponding to a thermal flux of 80 mW/m2 was determined. Its comparison with the present-day geothermic curve corresponding to 60 mW/m2 demonstrates general cooling of the lithosphere. The Moho surface position also changed from 35–40 km (as the boundary between lherzolites and granulites) to 55–60 km, as a proper geophysical Moho discontinuity. Results of laboratory measurements of electrical conductance of upper mantle and lower crust rocks samples in correlation to geoelectric and thermal models make it possible to define lherzolite, granulite, and eclogite massifs in the depth zone of the Tarim and Tien Shan junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号