首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The compressional and shear wave velocities in quarzite, granite, and granulite are determined at a fixed confining pressure of 2 kb as a function of temperature up to 720° C. The high-low quartz transition of the constituent quartz minerals is associated with a pronounced decrease in velocity of the compressional waves when approaching the transition and with a significant velocity increase after the transition. In contrast, the effect of the α-β transition on shear wave velocities is small. The drop of V P is explained by the elastic softening of structure of the constituent quartz minerals near the α-β transition and the opening of grain-boundary cracks, caused by the very high volumetric thermal expansion of the quartz relative to the other component minerals. The velocity increase in the β-field may be attributed to an elastic hardening of the quartz structure. Poisson ratios computed from the velocity data are anomalous for a solid: they become negative within the transition regime. The transition temperature, as indicated by the minimum velocities, is higher in the polycristalline rocks than is expected on grounds of single crystal behavior, and the discrepancy is more marked in granite than in quartzite. The shift of the transition temperature to higher values is explained by internal stresses that arise from the anisotropy of the thermal expansion and compressibility of individual grains and the differences in thermal expansion and compressibility between different component minerals. The role of the α-β quartz transition as a possible cause of low-velocity layers is discussed.  相似文献   

2.
Compressional (VP) and shear (VS) wave velocities and the dependent elastic constants have been determined by the pulse transmission technique to 6 kb confining pressure at room temperature and to 700° C at 6 kb confining pressure for eleven basalts from the Faeroe Islands. The Faeroe basalts investigated are tholeiitic, they clearly lie within the tholeiitic area, and display a pronounced trend of iron enrichment from rocks with an M/M + F ratio of 0.5 to rocks with an M/M + F ratio of about 0.25. The mean VP and VS for eleven specimens are 5.57 km/sec and 3.18 km/sec, respectively. Velocity—density relations for the basalts might be more appropriately described by non-linear solutions than by linear relations commonly used for basalts. In general, VP and VS remain unaffected by temperature up to 300° C. At higher temperature the changes in wave velocities are influenced by metamorphic processes and are, therefore, somewhat erratic. In zeolite-bearing specimens an abrupt velocity decrease around 350°C is observed, which correlates well with a drastic compaction of bulk volume. Additional experiments on cold-pressed zeolite powder clearly indicate that the sharp velocity decrease in the basalts is related to dehydration of zeolite minerals. Partial-melting processes, which occur within vesicules and pore-spaces at distinctly higher temperatures have no additional effect on wave velocity. Comparison with field data reveals that, without exception, the velocities at 0.5 kb confining pressure display the same range that has been commonly noted in refraction data for Layer 2. There are no significant differences in wave velocities and the pressure—temperature dependence in samples recovered from the upper, middle, and lower basalt series in the Faeroe Islands.  相似文献   

3.
4.
5.
夏琼霞  郑永飞 《岩石学报》2011,27(2):433-450
在俯冲带变质过程中,石榴石是高压-超高压变质榴辉岩和片麻岩的常见变质矿物。由于石榴石具有难熔和流体中的低溶解能力的特点,通常可以很好地保存下来,并且能够保留复杂的化学成分环带,以及不同类型的矿物或流体包裹体,为解释石榴石寄主岩石经历的变质演化历史提供了重要信息。石榴子石的主微量元素成分受控于很多因素,如全岩成分、变质的温压条件、控制石榴子石形成的相关变质反应、与石榴子石共生的矿物种类和成分等。因此,在利用石榴石探讨超高压变质的演化历史时,对石榴石进行系统的主要元素、微量元素、氧同位素以及矿物包裹体分析,以及相互间的成因关系。同时,对石榴石中的锆石或独居石包裹体并进行原位U-Pb定年和微量元素分析,可以为变质石榴石的形成时代提供直接的时间制约。深入研究超高压变质岩中石榴石的生长阶段,不仅可以为含石榴石寄主岩石的变质过程提供岩石学和地球化学证据,而且对于理解石榴石的形成机制、生长规律及其变质化学动力学过程具有重要的科学意义。  相似文献   

6.
变质作用温度与压力极限值的估算方法   总被引:1,自引:2,他引:1  
吴春明  陈泓旭 《岩石学报》2013,29(5):1499-1510
变质矿物共生组合中缺少某种矿物,或者变质矿物的原始成分被不同程度地破坏,无法直接应用压力计或温度计算出具体的温度或压力数值时,可以根据实际情况,估算P-T的极限值.估算方法包括如下几类:(1)根据纯相矿物的相变条件,可以确定温度或压力的极限值.例如,根据Al2SiO5矿物相图可知,与红柱石平衡的矿物组合,稳定存在的压力不超过Al2SiO5矿物三相点的压力条件(0.375±0.025GPa);与夕线石平衡的矿物组合,稳定存在的温度不低于Al2SiO5矿物三相点的温度条件(504±20℃);(2)某些特殊矿物组合,其稳定域本身就具有温度或压力极限值的指示意义.例如,高温或超高温变质岩中的紫苏辉石+夕线石+石英组合,稳定存在的压力不低于1.05 GPa;假蓝宝石+石英组合稳定存在的温度不低于1050℃;(3)特殊矿物消失的反应线,可以限定温度极大值.例如,白云母脱水分解的反应,在中等压力条件下,不超过650℃,即与白云母+石英平衡共生的矿物组合一般不会高于650℃;(4)对于矿物固溶体发生出溶的情况,根据新生出溶页片和残留基体矿物,采用溶线温度计(二长石温度计、二辉石温度计、方解石-白云石温度计)计算出的温度数值,代表原先成分均匀的矿物固溶体出溶之前的温度极小值;(5)如果岩石中发生了退变质反应,要恢复变质作用高峰期的P-T条件,需要尽可能恢复高峰期的矿物成分,或者采用接近高峰期的矿物成分;(6)根据压力计模式反应中位于高压侧或低压侧的某种纯相矿物,可以确定压力极限值.例如,金红石位于GRAIL压力计模式反应的高压一侧.当岩石中缺少金红石时,可以人为假定岩石中存在金红石,计算出的压力为真实压力的极大值.由于压力计模式反应大多为纯转变反应,因此根据实际矿物组合和压力计模式反应,一般可以估算变质作用压力的极小值或极大值.估算变质作用P-T的极限值,方法并不限于本文所述的例子.  相似文献   

7.
桃行榴辉岩是苏鲁超高压变质带中段主要榴辉岩体密集分布区之一。流体包裹体研究表明,榴辉岩矿物及高压脉体石英中捕获有五种类型的流体包裹体:在超高压-高压榴辉岩相条件下捕获的N2±CH4包裹体;在榴辉岩发生麻粒岩相叠加变质作用期间被捕获的B型纯CO2液相包裹体;在高压榴辉岩重结晶阶段被捕获的C型CO2-H2O包裹体和D型高盐度水溶液包裹体;超高压岩石折返过程中的最晚阶段(角闪岩相退变质甚至更晚)捕获的E型低盐度水溶液包裹体。利用榴辉岩矿物及高压脉体石英中捕获的流体包裹体类型及期次可以重建超高压变质作用板片折返过程中的流体性状与演化,而石榴石中捕获的纯CO2包裹体为本区榴辉岩相岩石遭受了麻粒岩相叠加提供了佐证。  相似文献   

8.
Osumilite, approximate composition K(Mg,Fe)2 Al5Si10O30, has been reported recently from two granulite localities. The mineral has been synthesised in a model pelitic composition at 1000 and 1100 ° C and 3.6–6.3 kb under conditions of low water and oxygen fugacity. Osumilite coexists, apparently stably, with hypersthene, cordierite and quartz (?) thus duplicating the mineral assemblage of one of the natural occurrences. Osumilite is in a divariant reaction relationship with cordierite and hypersthene i.e. osumilite ? cordierite + hypersthene + orthoclase+quartz. This reaction runs to the right with increasing pressure. Experimental data and field observations suggest that the joins osumilite-garnet and osumilite-sillimanite are not stable. It is suggested osumilite is involved in an invariant point in the system K2O-MgO-FeO-A12O3-SiO2 with the phases cordierite, hypersthene, sapphirine, spinel, orthoclase and quartz. The invariant point should occur at 1000 ± 100 °C and 7± 2kb.  相似文献   

9.
Y. Guguen  A. Schubnel 《Tectonophysics》2003,370(1-4):163-176
Cracks play a major role in most rocks submitted to crustal conditions. Mechanically, cracks make the rock much more compliant. They also make it much easier for fluid to flow through any rock body. Relying on Fracture Mechanics and Statistical Physics, we introduce a few key concepts, which allow to understand and quantify how cracks do modify both the elastic and transport properties of rocks. The main different schemes, which can be used to derive the elastic effective moduli of a rock, are presented. It is shown from experimental results that an excellent approximation is the so-called non-interactive scheme. The main consequences of the existence of cracks on the elastic waves is the development of elastic anisotropy (due to the anisotropic distribution of crack orientations) and the dispersion effect (due to microscopic local fluid flow). At a larger scale, macroscopic fluid flow takes place through the crack network above the percolation threshold. Two macroscopic fluid flow regimes can be distinguished: the percolative regime close to the percolation threshold and the connected regime well above it. Experimental data on very different rock types show both of these behaviors.  相似文献   

10.
Simultaneous measurements of compressional and shear wave velocities, Vp and Vs, in acidic and basic igneous rocks and volcanic glasses, were made up to 900°C and at 10–20 kbar.The effects of pressure and temperature on Vp and Vs in glasses and glassy rocks change at about 600°C, presumably the glass transition temperature. These effects are directly related to the silica content in the samples. and for obsidian are negative at room temperature and 245°C, but are positive at 655°C. The velocity—pressure relations for obsidian display an obvious hysteresis phenomena. for basalt glass is slightly negative, but is positive for usual substances at room temperature, and for obsidian and glassy andesite are positive up to about 600°C but are negative above that temperature. However, for basalt glass as well as other crystalline rocks, and are negative at all temperatures. Glass once heated above the glass transition temperature Tg under pressure P1 retains the memory of pressure P1 after it is cooled down below Tg and while subjected to another pressure P2. An abrupt shift of the velocities correlating to pressure P2 occurs when the glass is again heated to Tg. VpT and VsT relations for obsidian, glassy andesite, and basalt glass clearly exhibit this pressure memory.  相似文献   

11.
A compilation of 18O analyses of minerals separated from about 400 igneous and metamorphic rocks from published investigations reveals regularity in the fractionation of 18O among associated minerals, suggesting that an approach to isotopic equilibrium may be common. However, for only a minority of terrestrial rocks are these regularities sufficiently systematic to be compatible with the actual attainment and preservation of isotopic equilibrium among three minerals. Fractionations among triplets of quartz, calcite, feldspar, muscovite, and magnetite show some correspondence to those expected on the basis of experimental calibrations; however, there are also considerable deviations. The variability of natural data is such that less than half of the rocks analyzed to date would yield concordant 18O-derived temperatures. Of the additional 52 mineral triplets studied, plagioclase-pyrox-ene-ilmenite, plagioclase-pyroxene-magnetite, plagioclase-pyroxene-olivine, quartz-amphibole-garnet, pyroxene-ilmenite-magnetite, muscovite-biotite-magnetite, and quartz-muscovite-amphibole show the most systematic oxygen isotope fractionations. For 12 other mineral triplets a defined isotope fractionation relationship may be postulated to underlie the data; however for these a close approach to isotopic equilibrium is not commonly observed. For 33 of the mineral triplets an approach to isotopic equilibrium can be noted; however, the scatter of the available data is such that a systematic influence of a factor, such as temperature, on the size of the 18O fractionation could not be detected. In the past, regularities of oxygen isotope fractionations among three minerals have been used to establish secondary isotope geothermometers. Before this can be done with any reliability, however, the effects of possible retrograde isotope exchange and spurious correlation must be accounted for.  相似文献   

12.
《地学前缘(英文版)》2018,9(6):1777-1794
Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of ~204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO_2 and K_2 O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al_2 O_3, FeO, TiO_2, and K_2 O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K_2 O concentration and covary with other major oxides as a consequence. Among sedimentary rocks,aluminous shales are the highest heat producing(2.9 μW~(-3)) whereas more common iron shales are lower heat producing(1.7 μW m~(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere.  相似文献   

13.
The Variscan orogenic belt, of which the Bohemian Massif is a part, is typically recognized for its characteristic low pressure, high temperature metamorphism and a large volume of granites. However, there are also bodies of high pressure rocks (eclogites, garnet peridotites and high pressure granulites) which are small in size but widely distributed throughtout the Massif. Initially the high pressure rocks were considered to be relicts of a much older orogenic event, but the increasing data derived from isotopic and geochronological investigations show that many of these rocks have Palaeozoic protoliths. Metamorphic ages from the high pressure rocks define no single event. Instead, a number of discrete clusters of ages are found between about 430 Ma and the time of the dominant low pressure event at around 320–330 Ma.Most of the eclogite and granulite facies rocks are assigned to allochthonous nappes that arrived close to the end of the low pressure event, but before final granite intrusion. The nappes contain a mixture of different units and the relationship between rocks with high pressure relicts and host gneisses with no apparent signs of deep burial is still problematic. Some of the high pressure rocks retain evidence of multiple stages of partial re-equilibration during uplift. Moreover, it can be shown in certain instances that host gneisses also endured a multistage metamorphic development but with a peak event convergent with one of the breakdown stages in the enclosed rocks with high pressure relicts. It thus appears that the nappe units are composite bodies probably formed during episodic intracrustal thrusting. Fluids derived from prograde dehydration reactions in the newly under thrusting slab are taken to be the catalysts that drove the partial re-equilibrations.On the scale of the whole Massif it can be seen within the units with high pressure relicts that the temperature at the peak recorded pressure and that during the breakdown are variable in different locations. It is interpreted that regional metamorphic gradients are preserved for given stages in the history and thus the present day dismembered nappe relicts are not too far removed from their original spatial distribution in an original coherent unit. From the temperature information alone it is highly probable that the refrigerating underthrusting slab was situated in the north-west. However, this north-west to south-east underthrusting probably represents the major 380–370 Ma event and is no guide to the final thrusting that emplaced the much thinned nappe pile with high pressure relicts.Granite genesis is attributed to the late stage stacking, during the final Himalayan-type collision stage, of thinned crust covered by young, water-rich, sediments — erosion products of the earlier orogenic stages. Regional metamorphism at shallow depths above the voluminous granites was followed by final nappe emplacement which rejuvenated the granite ascent in places. Correspondence to: P. J. O'Brien  相似文献   

14.
P- and S-wave velocities in nepheline basalt, Hamada, as well as diabase, Maryland, were measured experimentally to 1000°C and 2.5 GPa. A remarkable frequency dependence of large velocity-decrease was observed for both P- and S-waves at temperatures above 500°C. Remarkable velocity-characteristics, which cannot be explained by the existing theories, were:
1. (1) Velocities were decreased considerably at 1–3 MHz. Above 3 MHz, samples showed elastic behavior like that of a perfect solid, and below 1 MHz, velocity-decrease decayed gradually.
2. (2) Both P- and S-wave velocities decreased in the same way and almost to the same degree.
3. (3) The higher the temperature, the more remarkably velocities decreased, at least up to the experimental limit temperature.
A hypothesis of the relaxation of stress waves by the fluid-flow in the inclusions is proposed. Examples of geophysical applications are given for the attenuation and travel-time anomalies in the volcanic region and the P- and S-wave velocity-decrease in the upper mantle beneath continents.  相似文献   

15.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

16.
The Peloritani Mountain Belt (north-eastern Sicily) represents the connection between the Southern Appenninic Range and the Appenninic Maghrebid Chain. The lithotypes outcropping in a 36 km long and approximately 8 km wide area in the eastern part of the Peloritani Mountains are considered to represent most properly the composition of the lower crust. We selected 7 representative samples of silicate rocks (amphibolite, paragneisses, augen gneiss, phyllitic quartzite, pegmatitic rock) and 3 samples of calcite rocks (calc-schist, marbles) for the petrophysical measurements. Measurements were done on sample cubes of dry rocks in a multi-anvil apparatus. Raising of pressure gives rise to velocity increase, but the rate is different in the silicate and calcite rocks and closely related to progressive closure of microcracks. Linear behaviour is approached above about 200 MPa. Increasing temperature at 600 MPa decreases velocities in most silicate and in the calcite rocks with almost linear slopes. Substantial anisotropy of P- and S-wave velocities and shear wave splitting is found in both rock types. The residual anisotropy observed above about 200 MPa is attributed to lattice preferred orientations (LPO) of major minerals. 3D velocity calculations for an amphibolite, a paragneiss and a marble sample based on the LPO of hornblende, biotite and calcite, respectively, confirm the experimental findings of a close relationship between velocity anisotropy, shear wave splitting, shear wave polarization, lattice preferred orientation and the structural frame of the rocks (foliation, lineation). In the silicate rocks, the intrinsic (600 MPa) average P-wave velocities and Poisson's (Vp / Vs) ratios exhibit a tendency for a linear increase with densities, whereas the three calcite rocks cluster at markedly higher P-wave velocities and Poisson's (Vp / Vs) ratios, compared to their densities. In the silicate rocks, there is also a linear trend for an inverse relationship between the SiO2 content, density and the Poisson's (Vp / Vs) ratio, respectively.  相似文献   

17.
侯振辉  李曙光 《岩石学报》2003,19(3):490-496
大别山已报导的锆石U-Pb年龄数据的综合对比表明大别山超高压变质岩的变质锆石的ID-TIMS年龄变化范围为212~238Ma(平均值为225.8Ma),SHRIMP单个样品年龄平均值变化范围219~231Ma(平均值为224.2Ma),二者吻合得很好。已报导的Cameca IMS 1270锆石U-Pb年龄显示较大变化。瑞典及美国有关实验室用Cameca IMS 1270得到的年龄值与ID-TIMS法给出的结果一致,但法国CNRS-CRPG离子探针国家实验室用Cameca IMS 1270获得的两个年龄值(248±16Ma,254±38Ma)的中心值显著高于其它ID-TIMS和SHRIMP的测定结果。对大别山镁铁-超镁铁岩岩浆锆石U-Pb年龄的统计结果表明,用ID-TIMS法得到的年龄均集中在123~130Ma,SHRIMP年龄变化范围为125~129Ma,二者仍吻合很好。而在法国CNRS-CRPG离子探针国家实验室得到的年龄平均值为144.5Ma,也显著高于ID-TIMS和SHRIMP法的定年结果。因此已报导的法国CNRS-CRPG实验室用Cameca IMS 1270得到的大别山U-Pb锆石年龄结果可能存在偏高的系统偏差,其年龄数据不适于用来讨论地质事件中的精细年代学问题。此外,锆石SHRIMP单点分析年龄值具有较大的随机误差,在一个符合正态(高斯)分布的数据群中,只有平均值才有意义,而那些位于正态分布边缘的少量偏离平均值的单点分析年龄值本身并不具有特殊的地  相似文献   

18.
To predict the behavior of structures in and on jointed rock masses, it is necessary to characterize the geomechanical properties of joints and intact rock. Among geometry properties of joints, trace length has a vital importance, because it affects rock mass strength and controls the stability of the rock structures in jointed rock masses. Since joint length has a range of values, it is useful to have an understanding of the distribution of these values in order to predict how the extreme values may be compared to the values obtained from a small sample. For this purpose, three datasets of joint systems from nine exposures of igneous, metamorphic, and sedimentary rocks are studied. Joint trace length is one of the most difficult properties to measure accurately, but it may be possible to record other geometrical properties of exposed joints accurately; thereby, support vector machine (SVM) model is used to predict the joint trace length. SVM is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample and non-linearity with a good generalization performance. Consequently, goodness-of-fit (GOF) tests were applied on these data. According to these GOF tests, the lognormal distribution was found to be the best probability distribution function for representing a joint trace length distribution.  相似文献   

19.
大别山东南部高压—超高压变质岩的氢氧同位素地球化学   总被引:1,自引:1,他引:1  
本文报道了大别山东南部安徽石马地区柯石英榴辉岩组合和黄镇地区石英榴辉岩组合的全岩及单矿物的氢氧同位素特征。石马榴辉岩的δ18O值在1.0‰~7.4‰之间,云母δD值为-76‰~-61‰;黄镇榴辉岩的全岩δ18O值为-1.1‰~-2.1‰,云母δD值为-89‰~-77‰。矿物之间的氢氧同位素分馏既有处于平衡状态者,也有处于不平衡状态者,反映这些岩石除继承变质前母体的18O亏损特征外,还经历了显著的同位素退化交换作用。石马和黄镇榴辉岩的矿物对氧同位素温度均给出两个峰值380~430℃与绿片岩相变质条件一致,600~640℃与高角闪岩相变质条件一致;给不出峰变质温度(750~800℃)是由于岩石经历了退变质流体的强烈改造作用。大别东南部高压-超高压榴辉岩的南部边界为石英榴辉岩与花岗片麻岩的界线,但氧同位素研究指示两者为原位接触关系。  相似文献   

20.
Long-term creep tests of gabbro which have been performed with a maximum bending stress (20 bar) under a high confining pressure (1 kbar) and various temperatures, are described. Methods and techniques used in the experiment are mainly similar to those reported previously by the same authors (Itô and Sasajima, 1980) except for the application of high pressure and temperature. The techniques include the bending system, size and preparation of the sample, and the determination of its deformation by use of interference fringes of Na-D light. In order to measure a very small deformation of creep, intermittent breaks of the application of loading, confining pressure and temperature are necessary, and the creep curve is constructed from the intermittent advance of permanent deformation.The experiment has revealed two strange phenomena : one is a sinuous progress of the creep curve, and the other is that the deformation recovery shows strange behavior after the unloading. These results are discussed in close connection with the mechanism of the “turn back of creep” denoted by Itô and Sasajima (1980). The mean creep curves, at 25°C. 95°C and 150°C, obtained so far lead to viscosities of 1.6 · 1020, 1.9 · 1019 and 4.8 · 1018 poise, respectively and the maximum strain rates employed in the samples were 4.2 · 10−14, 3.6 · 10−13 and 1.4 · 10−12/sec, respectively, which cover the geological strain rate. Although we have only three data points, the logarithm of viscosity is linearly related to the reciprocal of absolute temperature (see Fig. 7), and an activation energy for creep of gabbro is found to be 7.6 kcal/mol. It should be noted that viscosities obtained are considerably smaller than those estimated for the crust and mantle, and that the activation energy is surprisingly smaller than those obtained by high-pressure experiments of rock deformation, which have been carried out under a strain rate larger than 10−8/sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号