首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This study deals with the transport of a contaminant in groundwater. The contaminant is subject to first order decay or linear adsorption. Its displacement can be modeled by a random walk process in which particles are killed at exponentially distributed times. Dirichlet problems are derived for the rate and mean time at which contaminated particles reach a particular part of the boundary of a certain domain. These Dirichlet problems are solved asymptotically for two types of 2D-flow patterns: flow parallel to the boundary of a domain and arbitrary flow towards a well in an aquifer.  相似文献   

2.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

3.
《水文科学杂志》2013,58(3):524-530
Abstract

Detection efficiencies of alternative groundwater monitoring networks were evaluated in relation to distance to a buffer zone (contaminant migration) boundary. This boundary establishes a distance limit within which contaminant plumes should pass through monitoring wells, located on curvilinear segments (monitoring loci) near a waste storage facility. Alternative strategies allocated monitoring wells to loci at specified distances, measured parallel to groundwater flow, from the downgradient boundaries of a landfill. One approach constrained wells to equal spacing, measured perpendicular to groundwater flow. Compressing well locations 10% closer to the downgradient corner of the landfill rendered alternative monitoring configurations. Computations by a monitoring efficiency model indicated: (a) networks largely maintained detection efficiency for different contaminant migration boundaries; (b) one network most efficiently attained a target detection capability for all contaminant migration boundaries; and (c) compressed networks slightly outperformed equal-spaced counterparts. Compressed networks with more wells along closer monitoring loci best maintained the detection efficiency when shifting the contaminant migration boundary closer to the landfill. Procedures described in this paper may be useful for examining trade-offs between monitoring efficiency and distance limits of contaminant travel at landfills posing potential hazards to underlying groundwater.  相似文献   

4.
The nodal domain integration method is applied to a two-dimensional advection-diffusion process in an anisotropic inhomogeneous medium. The domain is discretised into the union of irregular triangle finite elements with vertex-located nodal points and a linear trial function is used to approximate the governing flow equation's state variable in each element. Non-linear parameters are assumed quasi-constant for small durations in time in each element. The resulting numerical model represents the Galerkin and subdomain integration weighted residual methods and the integrated finite difference method as special cases. Both Dirichlet and Neumann boundary conditions are accommodated in a manner similar to the Galerkin finite element approach.  相似文献   

5.
时域瞬变电磁法三维有限差分正演技术研究   总被引:2,自引:2,他引:0       下载免费PDF全文
瞬变电磁法应用广泛,三维数值模拟是研究复杂地质模型异常响应规律的重要技术手段之一,也是反演的基础.目前瞬变电磁数值模拟的不足主要有两个方面:第一,场源是在地表水平、浅层介质均匀的条件下计算的,限制了应用范围;第二,地下边界采用Dirichlet边界条件,导致计算空间很大,耗时较长.针对上述问题,在三维正演时,场源采用有限长细导线模型,在Maxwell有源差分方程中直接加入电流密度进行计算.在地表面加入空气层,避免了复杂的向上延拓计算,也可以对地形影响下的响应规律进行分析.在空气边界和地下边界均采用CPML吸收边界条件,并改进了CPML的参数分布,能够吸收空气介质和大地介质中的低频电磁波而反射误差极小,在满足计算精度的条件下可以有效减小节点数量.对循环迭代方法进行优化,将计算域、CPML区域和场源的空间循环统一转化为矩阵方式,加快了计算速度,但是空间消耗增大了约4~5倍.采用三维有限差分正演算法对均匀半空间模型、层状模型和地形模型进行了计算,并与解析解进行了对比验证.  相似文献   

6.
Simulations of wave propagation in the Earth usually require truncation of a larger domain to the region of interest to keep computational cost acceptable. This introduces artificial boundaries that should not generate reflected waves. Most existing boundary conditions are not able to completely suppress all the reflected energy, but suffice in practice except when modelling subtle events such as interbed multiples. Exact boundary conditions promise better performance but are usually formulated in terms of the governing wave equation and, after discretization, still may produce unwanted artefacts. Numerically exact non-reflecting boundary conditions are instead formulated in terms of the discretized wave equation. They have the property that the numerical solution computed on a given domain is the same as one on a domain enlarged to the extent that waves reflected from the boundary do not have the time to reach the original truncated domain. With a second- or higher-order finite-difference scheme for the one-dimensional wave equation, these boundary conditions follow from a recurrence relation. In its generalization to two or three dimensions, a recurrence relation was only found for a single non-reflecting boundary on one side of the domain or two of them at opposing ends. The other boundaries should then be zero Dirichlet or Neumann. If two non-reflecting boundaries meet at a corner, translation invariance is lost and a simple recurrence relation could not be found. Here, a workaround is presented that restores translation invariance by imposing classic, approximately non-reflecting boundary conditions on the other sides and numerically exact ones on the two opposing sides that otherwise would create the strongest reflected waves with the classic condition. The exact ones can also be applied independently. As a proof of principle, the method is applied to the two-dimensional acoustic wave equation, discretized on a rectangular domain with a second-order finite-difference scheme and first-order Enquist–Majda boundary conditions as approximate ones. The method is computationally costly but has the advantage that it can be reused on a sequence of problems as long as the time step and the sound speed values next to the boundary are kept fixed.  相似文献   

7.
The existence of a free‐flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro‐scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free–porous domain interface and, hence, the combined flow behaviour. Under steady‐state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well‐known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow‐through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing ‘stress‐free boundary conditions’ at the open ends of the domains, which have been shown to provide accurate results by a number of previous workers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Oversampling techniques are often used in porous media simulations to achieve high accuracy in multiscale simulations. These methods reduce the effect of artificial boundary conditions that are imposed in computing local quantities, such as upscaled permeabilities or basis functions. In the problems without scale separation and strong non-local effects, the oversampling region is taken to be the entire domain. The basis functions are computed using single-phase flow solutions which are further used in dynamic two-phase simulations. The standard oversampling approaches employ generic global boundary conditions which are not associated with actual flow boundary conditions. In this paper, we propose a flow based oversampling method where the actual two-phase flow boundary conditions are used in constructing oversampling auxiliary functions. Our numerical results show that the flow based oversampling approach is several times more accurate than the standard oversampling method. We provide partial theoretical explanation for these numerical observations.  相似文献   

9.
An analytical approach is presented for solving problems of steady, two-dimensional groundwater flow with inhomogeneity boundaries. A common approach for such problems is to separate the problem domain into two homogeneous domains, search for solutions in each domain, and then attempt to match conditions, either exactly or approximately, along the inhomogeneity boundary. Here, we use classical solutions to problems with inhomogeneity boundaries with simple geometries, and map conformally the entire domain onto a new one. In this way, existing solutions are used to solve problems with more complex, and more practical, boundary geometries. The approach is general, but subject to some restrictions on the mapping functions that may be used.Using this approach, we develop explicit analytical solutions for two problems of practical interest. The first problem addresses aquifer interaction across a gap in an impermeable separating layer; flow regimes are defined and the interaction is quantified. The second solution represents flow in the vertical plane to a partially clogged stream bed that is partially penetrating the aquifer; the stream bed is modeled as a thin layer of low-permeability silt. Flow regimes for groundwater surface–water interaction are quantified analytically.  相似文献   

10.
With increasing resolution in numerical ocean models, nonhydrostatic pressure effects have to be accounted for. In sigma-coordinate mode split ocean models, this pressure may be regarded as a pressure correction. An elliptic equation must be solved for the nonhydrostatic pressure, and the gradients are used to correct the provisional hydrostatic velocity components in each time step. The focus in the present work is on the surface boundary condition for the elliptic equation. In the literature, both Dirichlet and Neumann boundary conditions are suggested and applied. To investigate the sensitivity of the numerical results to the choice of boundary condition, three numerical experiments are performed. The first and second experiments are studies of the propagation and steepening of nonlinear internal waves. The first study is on tank scale and the second experiment is on ocean scale. In the tank-scale experiment, the density and the flow fields are very robust to the choice of boundary condition. In the ocean-scale experiment, the waves produced with a Dirichlet boundary condition become more damped than the waves produced with a Neumann boundary condition. The third study involves a surface buoyant jet. It is shown that well-known characteristics of the plume front are reproduced with a Neumann boundary condition, but the rotating turbulent core of this front is lost with a Dirichlet condition. It is accordingly argued that the appropriate surface boundary condition in mode split nonhydrostatic ocean models is the Neumann condition.  相似文献   

11.
The residence time of a tracer in a control domain is usually computed by releasing tracer parcels and registering the time when each of these tracer parcels cross the boundary of the control domain. In this Lagrangian procedure, the particles are discarded or omitted as soon as they leave the control domain. In a Eulerian approach, the same approach can be implemented by integrating forward in time the advection–diffusion equation for a tracer. So far, the conditions to be applied at the boundary of the control domain were uncertain. We show here that it is necessary to prescribe that the tracer concentration vanishes at the boundary of the control domain to ensure the compatibility between the Lagrangian and Eulerian approaches. When we use the Constituent oriented Age and Residence time Theory (CART), this amounts to solving the differential equation for the residence time with boundary conditions forcing the residence time to vanish at the open boundaries of the control domain. Such boundary conditions are likely to induce the development of boundary layers (at outflow boundaries for the tracer concentration and at inflow boundaries for the residence time). The thickness of these boundary layers is of the order of the ratio of the diffusivity to the velocity. They can however be partly smoothed by tidal and other oscillating flows.  相似文献   

12.
The Henry formulation, which couples subsurface flow and salt transport via a variable-density flow formulation, can be used to evaluate the extent of sea water intrusion into coastal aquifers. The coupling gives rise to nontrivial flow patterns that are very different from those observed in inland aquifers. We investigate the influence of these flow patterns on the transport of conservative contaminants in a coastal aquifer. The flow is characterized by two dimensionless parameters: the Péclet number, which compares the relative effects of advective and dispersive transport mechanisms, and a coupling parameter, which describes the importance of the salt water boundary on the flow. We focus our attention on two regimes – low and intermediate Péclet number flows. Two transport scenarios are solved analytically by means of a perturbation analysis. The first, a natural attenuation scenario, describes the flushing of a contaminant from a coastal aquifer by clean fresh water, while the second, a contaminant spill scenario, considers an isolated point source.  相似文献   

13.
Earlier modelling studies have shown the difficulty of accurately simulating snowmelt infiltration into frozen soil using the hydraulic model approach. Comparison of model outputs and field measurements have inferred the occurrence of rapid flow even during periods when the soil is still partly frozen. A one-dimensional, physically based soil water and heat model (SOIL) has been complemented with a new two-domain approach option to simulate preferential flow through frozen layers. The ice is assumed to be first formed at the largest water filled pore upon freezing. Infiltrating water may be conducted rapidly through previously air-filled pores which are not occupied by ice. A minor fraction of water is slowly transferred within the liquid water domain, which is absorbed by the solid particles. A model validation with field measurements at a location in the middle-east of Sweden indicated that the two-domain approach was suitable for improving the prediction of drainage during snowmelting. In particular, the correlation between simulated and observed onset of drainage in spring was improved. The validation also showed that the effect of the high flow domain was highly sensitive to the degree of saturation in the topsoil during freezing, as well as to the hydraulic properties at the lower frost boundary regulating the upward water flow to the frozen soil and ice formation.  相似文献   

14.
Flow against dispersion in two-dimensional regions   总被引:1,自引:0,他引:1  
In field applications, upstream spreading of contaminant plumes may be controlled by the flow of fresh water in a direction opposite to the dispersive expansion direction of the plume. In the current literature this type of control is identified as flow against dispersion or contrary flow. In this study analytic methods are used to investigate contrary flow conditions for two-dimensional applications. In particular, special attention is given to the dispersive spread of the contaminant plume in the transverse direction under equilibrium flow against dispersion. Typical problems analyzed emphasize the effect of adsorption and transverse dispersion on the overall control process. Problems analyzed indicate that equilibrium flow velocities deduced from one-dimensional analysis, which may balance the dispersive spread of the plume in the longitudinal direction, represent an over design condition when these equilibrium velocities are compared with the conditions generated from a two-dimensional model for a downstream source which is finite in the transverse direction.  相似文献   

15.
The nodal domain integration method is used to develop a numerical model of the linear diffusion equation. The nodal domain integration approach is shown to represent an infinity of finite element mass matrix lumping schemes including the Galerkin and subdomain integration versions of the weighted residual method and an integrated finite difference method. Neumann, Dirichlet and mixed boundary conditions are accommodated analogous to the Galerkin finite element method. In order to reduce the overall integrated approximation relative error, a mass matrix lumping formulation is developed which is based on the Crank-Nicolson time advancement approximation. The optimum mass lumping factors are found to be strongly related to the model timestep size.  相似文献   

16.
This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier–Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589–605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541–51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775–84].  相似文献   

17.
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the joint approach. Furthermore, the dual estimation is proven to be very effective computationally, recovering accurate estimates at a reasonable cost.  相似文献   

18.
This study develops a robust method for screening one-well hydraulic barrier design alternatives that can be easily computed without a numerical simulation model. The paper outlines the general method and shows its implementation with hydraulic barriers using a single pumping well. For such barriers, the method is easily computable with spreadsheets and/or charts depicted within the paper and posted online. The method applies the potential flow theory, which leads to using a curvilinear coordinate system for all types of calculations. For contaminant transport calculations, the method applies the boundary layer theory. For calculations of aquifer remediation, the method refers to bulk characteristics of the domain. As an example, the method has been applied to calculate the possible containment of a wide part of the coastal plain aquifer in Israel, which is contaminated by entrapped kerosene (a light nonaqueous phase liquid).  相似文献   

19.
Analytical solutions for groundwater flow in unconfined rectangular aquifers are presented for the case of recharge from rectangular areas. The linearised differential equation of the flow is solved using Laplace and finite Fourier transforms. The problem concerns the response of finite aquifers to periodic (seasonal) recharge schemes of variable duration. Results can be obtained for various combinations of Dirichlet and Neumann boundary conditions and can be easily used in a preliminary study of water resources management.  相似文献   

20.
This paper presents a formulation accounting for the effect of delayed drainage phenomenon (DDP) on the breakthrough of contaminant flux in an aquitard, by considering the movement of soil particles, porosity variation, hydraulic head variation, and transient flow during the consolidation. The water flow equation in an aquitard was based on the Terzaghi's consolidation theory, and the contaminant transport equation was derived on the basis of the mass balance law. Two cases were used to illustrate the effect of DDP on the contaminant transport in an aquitard of small deformation. It is found that the breakthrough time of contaminant in an aquitard is very long, which is mainly ascribed to the low permeability of aquitard and sorption of soil particles. It is also found that the increase of depletion, which is in general induced by the increase of thickness and specific storativity and the decrease of hydraulic conductivity, enhances the impact of DDP on the contaminant transport in an aquitard. A larger delay index (τ0) of DDP gives a greater delay breakthrough time (DBT) of solute transport in an aquitard, which controls the difference of the breakthrough time of contaminant transport in aquitards with and without the occurrence of DDP. For the cases where advection plays a dominant role during the process of solute transport, τ0 is almost linearly correlated with DBT, and the ratio of DBT over the breakthrough time without consideration of DDP also approximately shows a linear relationship with the ratio of specific storativity to porosity, given a fixed drawdown in the adjacent aquifer with the sorption being ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号