首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In contrast to earth, the atmosphere of the moon is exceedingly tenuous and appears to consist mainly of noble gases. The solar wind impinges on the lunar surface, supplying detectable amounts of helium, neon and 36Ar. Influxes of solar wind protons and carbon and nitrogen ions are significant, but atmospheric gases containing these elements have not been positively identified. Radiogenic 40Ar and 222Rn produced within the moon have been detected. The present rate of effusion of argon from the moon accounts for about 0.4% of the total production of 40Ar due to decay of 40K if the average abundance of potassium in the moon is 1000 ppm. Lack of weathering processes in the regolith suggests that most of the atmospheric 40Ar originates deep in the lunar interior, perhaps in a partially molten core. If so, other gases may be vented along with the argon.  相似文献   

2.
The unexpected and unusual characteristics of the lunar seismogram have given rise to various speculations regarding their origin: secondary ejecta, diffusive wave propagation and wave propagation effects in a self-compacted powder layer with a linearly increasing velocity with depth. Many of the characteristics can be explained, qualitatively, by the simple theory of a self-compacting, dry powder layer for which the velocity varies as the sixth root of the depth. This gives a very low seismic velocity at the lunar surface which, in turn, allows the signal to have a long duration, a lack of correlation between horizontal and vertical displacements, a signal envelope that changes with source to receiver separation and a varying spectrum over the duration of the signal. To explain the long duration of the seismic signal quantitatively, it is necessary to include scattering of the normally incident rays at the surface by shallow surface undulations. The sixth root velocity-depth dependence is consistent with the measured variation, with pressure, of the compressibility and velocity of lunar samples.  相似文献   

3.
The lunar maria     
The hypothesis proposed by Gold that the lunar maria are composed of dust is shown to give a detailed explanation of the present appearance of the maria. It is also shown that many bright rays may not have the extent and intensity as they had when they were formed.  相似文献   

4.
The lunar surface reveals a sharp opposition effect, which is to be explained by the shadowing and coherent backscattering mechanisms. Generalizing the radiative transfer theory via Monte Carlo methods, we are carrying out studies of backscattering in regolith-like scattering media. We have also started systematic laboratory measurements of structural simulators of lunar regolith. The SMART-1 AMIE and D-CIXS/XSM experiments provide us a unique opportunity for a simultaneous multiwavelength study of the lunar regolith close to opposition, since the SMART-1 spacecraft will pass over several different types of lunar surface at zero phase angles. Results of our theoretical and laboratory investigations can be used as a basis to interpret the SMART-1 AMIE and D-CIXS/XSM experiments. In particular, it seems to be possible to estimate regional variations of regolith particle volume fraction and their size. A short review of observational, experimental and theoretical works is also presented here.  相似文献   

5.
Directional infrared emission from the sunlit lunar surface is determined for the thermal meridian and as a function of observer elevation and azimuth angles at three Sun elevation angles. A study of selected mare sites at full Moon suggests that brightness temperatures are relatively insensitive to changes in certain surface parameters, such as the photometric function, emissivity, and thermophysical properties of the soil. The observed deviations from predictions for an average surface can be accounted for by changes in surface roughness.Deceased 12 January, 1971.  相似文献   

6.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

7.
8.
Recent work on planetary formation processes have suggested that ancient planetary bodies could have been warmer and, therefore, more easily deformable soon after formation than at present. By use of the estimates for the elastic parameters believed to be appropriate for a warm ancient Moon and Earth, it is shown that the energy of deformation of the planetary bodies during a close gravitational encounter was sufficient to effect capture.  相似文献   

9.
The SMART-1 lunar impact   总被引:1,自引:0,他引:1  
The SMART-1 spacecraft impacted the Moon on 3rd September 2006 at a speed of 2 km s−1 and at a very shallow angle of incidence (∼1°). The resulting impact crater is too small to be viewed from the Earth; accordingly, the general crater size and shape have been determined here by laboratory impact experiments at the same speed and angle of incidence combined with extrapolating to the correct size scale to match the SMART-1 impact. This predicts a highly asymmetric crater approximately 5.5-26 m long, 1.9-9 m wide, 0.23-1.5 m deep and 0.71-6.9 m3 volume. Some of the excavated mass will have gone into crater rim walls, but 0.64-6.3 m3 would have been ejecta on ballistic trajectories corresponding to a cloud of 2200-21,800 kg of lunar material moving away from the impact site. The shallow Messier crater on the Moon is similarly asymmetric and is usually taken as arising from a highly oblique impact. The light flash from the impact and the associated ejecta plume were observed from Earth, but the flash magnitude was not obtained, so it is not possible to obtain the luminous efficiency of the impact event.  相似文献   

10.
Meteoroids always posed a great hazard to spacecraft security. A meteoroids stream assembled by a large massive body will further enhance the hazard severalfold. For example, the radiant of Northern Taurids (NTA) will be occulted by the Moon on Nov. 12, 2011. Since the gravitational lensing effect of massive bodies can gather together the orbits of meteoroids, the observable flux of meteoroids will increase. In this paper a set of numerical methods was built to discuss the observational effect of this kind of phenomena. The ZHR of NTA is generally small. But it can be local strong on the Earth by the lunar gravitational assembling. The calculated result suggests that a ten times stronger than normal NTA will appear in the sea area of Tristan da Cunha islands during 00h45m UT to 02h00m UT on Nov. 12, 2011.  相似文献   

11.
The dayside near-surface lunar plasma environment is electrostatically complex, due to the interaction between solar UV-induced photoemission, the collection of ambient ions and electrons, and the presence of micron and sub-micron sized dust grains. Further complicating this environment, although less well understood in effect, is the presence of surface relief, typically in the form of craters and/or boulders. It has been suggested that such non-trivial surface topography can lead to complex electrostatic potentials and fields, including “mini-wakes” behind small obstacles to the solar wind flow and “supercharging” near sunlit-shadowed boundaries (Criswell, D.R., De, B.R. [1977]. J. Geophys. Res. 82 (7); De, B.R., Criswell, D.R. [1977]. J. Geophys. Res. 82 (7); Farrell, W.M., Stubbs, T.J., Vondrak, R.R., Delory, G.T., Halekas, J.S. [2007]. Geophys. Res. Lett. 34; Wang, X., Horányi, M., Sternovsky, Z., Robertson, S., Morfill, G.E. [2007]. Geophys. Res. Lett. 34, L16104). In this paper, we present results from a three-dimensional, self-consistent, electrostatic particle-in-cell code used to model the dayside near-surface lunar plasma environment over a variety of local times with the presence of a crater. Additionally, we use the particle-in-cell model output to study the effect of surface topography on the dynamics of electrostatic dust transport, with the goal of understanding previous observations of dust dynamics on the Moon and dust ponding on various asteroids.  相似文献   

12.
We have extended our Monte Carlo model of exospheres [Wurz, P., Lammer, H., 2003. Icarus 164 (1), 1-13] by treating the ion-induced sputtering process from a known surface in a self-consistent way. The comparison of the calculated exospheric densities with experimental data, which are mostly upper limits, shows that all of our calculated densities are within the measurement limits. The total calculated exospheric density at the lunar surface of about 1×107 m−3 as result of solar wind sputtering we find is much less than the experimental total exospheric density of about 1012 m−3. We conclude that sputtering contributes only a small fraction of the total exosphere, at least close to the surface. Because of the considerably larger scale height of atoms released via sputtering into the exosphere, sputtered atoms start to dominate the exosphere at altitudes exceeding a few 1000 km, with the exception of some light and abundant species released thermally, e.g. H2, He, CH4, and OH. Furthermore, for more refractory species such as calcium, our model indicates that sputtering may well be the dominant mechanism responsible for the lunar atmospheric inventory, but observational data does not yet allow firm conclusions to be drawn.  相似文献   

13.
In this paper we present an investigation on the tidal evolution of a system of three bodies: the Earth, the Moon and the Sun. Equations are derived including dissipation in the planet caused by the tidal interaction between the planet and the satellite and between the planet and the sun. Dissipation within the Moon is included as well. The set of differential equations obtained is valid as long as the solar disturbances dominate the perturbations on the satellite's motion due to the oblateness of the planet, namelya/R e greater than 15, and closer than that point equations derived in a preceding paper are used.The result shows the Moon was closer to the Earth in the past than now with an inclination to the ecliptic greater than today, whereas the obliquity was smaller. Toward the past, the inclination to the Earth's equator begins decreasing to 12° fora/R e=12 and suddenly grows. During the first stage the results are weakly dependant on the magnitude of the dissipation within the satellite, whereas the distance of the closest approach and the prior history are strongly dependent on that dissipation. In particular, the crossing of the Roche limit can be avoided.  相似文献   

14.
Four sets of published data are used: frequency dependence of the day-side horizontal magnetic amplification, the same for the dark-side vertical decrease, the day-side transient amplification and the dark-side transient decrease. Transient data are transformed into the frequency domain and the dark-side data are transformed into the corresponding day-side horizontal amplification. Finally, all experimental results are presented in the form of the day-side frequency response. The summarised apparent resistivity curve is obtained by this response. It corresponds to the model with resistivity about several hundreds of × m to the depths of 700–800 km. It suggests the absence of significant amounts of molten material to these depths.  相似文献   

15.
Multiple large impact basins on the lunar nearside formed in a relatively-short interval around 3.8-3.9 Gyr ago, in what is known as the Lunar Cataclysm (LC; also known as Late Heavy Bombardment). It is widely thought that this impact bombardment has affected the whole Solar System or at least all the inner planets. But with non-lunar evidence for the cataclysm being relatively weak, a geocentric cause of the Lunar Cataclysm cannot yet be completely ruled out [Ryder, G., 1990. Eos 71, 313, 322-323]. In principle, late destabilization of an additional Earth satellite could result in its tidal disruption during a close lunar encounter (cf. [Asphaug, E., Agnor, C.B., Williams, Q., 2006. Nature 439, 155-160]). If the lost satellite had D>500 km, the resulting debris can form multiple impact basins in a relatively short time, possibly explaining the LC. Canup et al. [Canup, R.M., Levison, H.F., Stewart, G.R., 1999. Astron. J. 117, 603-620] have shown that any additional satellites of Earth formed together with (and external to) the Moon would be unable to survive the rapid initial tidally-driven expansion of lunar orbit. Here we explore the fate of objects trapped in the lunar Trojan points, and find that small lunar Trojans can survive the Moon's orbital evolution until they and the Moon reach 38 Earth radii, at which point they are destabilized by a strong solar resonance. However, the dynamics of Trojans containing enough mass to cause the LC (diameters >150 km) is more complex; we find that such objects do not survive the passage through a weaker solar resonance at 27 Earth radii. This distance was very likely reached by the Moon long before the LC, which seems to rule out the disruption of lunar Trojans as a cause of the LC.  相似文献   

16.
Lucas Reindler 《Icarus》2003,162(2):233-241
A self-gravitating, elastic, spherical thick shell model is used to derive the present state of the lateral variations of density and stress differences within the lunar lithosphere. The model is allowed to deform under the load of an initial surface topography and internal density distribution, such that the resulting deformed body gives rise to the observed surface topography and gravity specified by the spherical harmonics of degree up to 70. Two main models are considered, Model A and Model B, with elastic lithospheres of thickness 300 and 210 km, respectively. Model A displays density perturbations of generally less than ±200 kg/m3 within the crustal layers, reducing rapidly to less than ±20 kg/m3 at the base of the lithosphere. The density perturbations in Model B are similar in the crust and marginally higher at the base of the lithosphere. The major stress differences in the mantle are associated with the mascon basins and are found to reach maximums of 8-10 MPa within the lower lithosphere (150-270 km) of Model A and maximums of 12-16 MPa at 150 to 180 km depth for Model B. A moderate correlation exists between the modeled stress distributions and shallow moonquake epicenters. However, the overall results of this study imply that other remnant stresses, due to processes other than density perturbations, exist and play a critical role in the large shallow moonquakes.  相似文献   

17.
The origin of lunar crater rays   总被引:5,自引:0,他引:5  
Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican-Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.  相似文献   

18.
At present the fundamental lunar ephemeris is based on Brown's theory of the motion of the Moon with improvements based on the bypassing of Brown's Tables, the removal of the great empirical term, the substitution of the relevant constants of the IAU system of astronomical constants and the retransformation of Brown's series in rectangular coordinates to spherical coordinates. Even so this ephemeris does not represent adequately the recent range and range-rate radio observations, and it will be inadequate for use in the analysis of laser observations of corner reflectors on the Moon. Numerical integrations for these purposes have already been made at the Jet Propulsion Laboratory, but improved theoretical developments are also required; new solutions of the main problem are in hand elsewhere. Work at H.M. Nautical Almanac Office is aimed at obtaining improved values of the constants of the lunar orbit by a rediscussion of occultation observations made since 1943 and at the redevelopment of the series for the planetary perturbations using more precise theories of the motion of the Sun and planets. The techniques and preliminary results of exploratory numerical integrations were briefly described.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, 17–23 August, 1969.  相似文献   

19.
The motion of a lunar satellite   总被引:2,自引:0,他引:2  
Presented in this theory is a semianalytical solution for the problem of the motion of a satellite in orbit around the moon. The principal perturbations on such a body are due to the nonspherical gravity field of the moon, the attraction of the earth, and, to a lesser degree, the attraction of the sun. The major part of the problem is solved by means of the celebrated von Zeipel Method, first successfully applied to the motion of an artificial earth satellite by Brouwer in 1959. After eliminating from the Hamiltonian all terms with the period of the satellite and those with the period of the moon, it is suggested to solve the remaining problem with the aid of numerical integration of the modified equations of motion.This theory was written in 1964 and presented as a dissertation to Yale University in 1965. Since then a great deal has been learned about the gravity field of the moon. It seems that quite a number of recently determined gravity coefficients would qualify as small quantities of order two. Hence, according to the truncation criteria employed, they should be considered in the present theory. However, the author has not endeavored to update the work accordingly. The final results, therefore, are incomplete in the lunar gravitational perturbations. Nevertheless, the theory does give the largest such variations and it does present the methods by which perturbations may be derived for any gravity terms not actually developed.  相似文献   

20.
Inhomogeneities beneath the lunar surface could alter the average microwave emission spectrum of the Moon in a fashion generally consistent with observations, even in the absence of an average heat flux or density gradients with depth. The lunar subsurface was modeled as an inhomogeneous lossy dielectric with three-dimensional refractive index fluctuations characterized by independent horizontal and vertical correlation lengths. The model suggests that attempts to infer the physical properties of the Moon from the lunar microwave spectrum could be significantly inaccurate if subsurface scattering were neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号