首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Summary A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.With 14 Figures  相似文献   

2.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

3.
This paper describes a diagnostic study of the feedback mechanism in greenhouse effects of increased CO_2 and oth-er trace gases(CH_4,N_2O and CFCs),simulated by general circulation model.The study is based on two sensitivity exper-iments for doubled CO_2 and the inclusion of other trace gases,respectively,using version one of the community climatemodel(CCM1)developed at the National Centre for Atmospheric Research.A one-dimensional(1-D)and atwo-dimensional(2-D)radiative-convective models are used to diagnose the feedback effect.It shows that thefeedback factors in global and annual mean conditions are in the sequence of surface albedo,water vapor amount,watervapor distribution,cloud height,critical lapse rate and cloud cover,while in zonal and annual mean conditions in thetropical region the above sequence does not change except the two water vapor terms being the largest feedback compo-nents.Among the feedback components,the total water vapor feedback is the largest(about 50%).The diagnosis alsogives a very small feedback of either the cloud cover or the lapse rate,which is substantially different from the 1-Dfeedback analysis by Hansen et al.(1984).The small lapse rate feedback is considered to be partly caused by theconvective adjustment scheme adopted by CCM1 model.The feedback effect for doubled CO_2 is very different from that of the addition of other trace gases because of theirdifferent vertical distributions of radiative forcing although the non-feedback responses of surface air temperature forboth cases are almost the same.For instance,the larger forcing at surface by the addition of other trace gases can causestronger surface albedo feedback than by doubled CO_2.Besides,because of the negative forcing of doubled CO_2 in thestratosphere,cloud height feedback is more intense.The larger surface forcing in the case of other trace gases can also in-fluence atmospheric water vapor amount as well as the water vapor distribution,which will in turn have strongerfeedback effects.All these indicate that it is incorrect to use“effective CO_2”to replace other trace gases in the generalcirculation model.  相似文献   

4.
Summary In this paper we briefly describe the characteristics and the performance of our 1-D Muenster Climate Model. The model system consists of coupled models including gas cycle models, an energy balance model and a sea level rise model. The chemical feedback mechanisms among greenhouse gases are not included. This model, which is a scientifically-based parameterized simulation model, is used here primarily to help assess the effectiveness of various plausible policy options in mitigating the additional man-made greenhouse warming and the resulting sea level rise.For setting priorities it is important to assess the effectiveness of the various measures by which the greenhouse effect can be reduced. To this end we take a Scenario Business-as-Usual as a reference case (Leggett et al., 1992) and study the mitigating effects of the following four packages of measures: The Copenhagen Agreements on CFC, HCFC, and halon reduction (GECR, 1992), the Tropical Forest Preservation Plan of the Climate Enquete-Commission of the German Parliament on CO2 reduction (ECGP, 1990), a detailed reduction scheme for energy-related CO2 (ECGP, 1990), and a preliminary scheme for CH4, CO, and N2O reduction (Bach and Jain, 1992–1993).The required reduction depends, among others, on the desired climate and ecosystem protection. This is defined by the Enquete-Commission and others as a mean global rate of surface temperature change of ca. 0.1 °C per decade — assumed to be critical to many ecosystems — and a mean global warming ceiling of ca. 2 °C in 2100 relative to 1860.Our results show that the Copenhagen Agreements, the Tropical Forest Preservation Plan, the energy-related CO2 reduction scheme, and the CH4 and N2O reduction schemes could mitigate the anthropogenic greenhouse warming by ca. 12%, 6%, 35%, and 9% respectively. Taken together, all four packages of measures could reduce the man-made greenhouse effect by more than 60% until 2100; i.e. over the climate sensitivity range 2.5 °C (1.5 to 4.5) for 2 × CO2, the warming could be reduced from 3.5 °C (2.4 to 5.0) without specific measures to 1.3 °C (0.9 to 2.0) with the above packages of measures; and likewise, the mean global sea level rise could be reduced from 65 cm (46 to 88) without specific measures to 32 cm (22 to 47) with the above measures.Finally, the model results also emphasize the importance of trace gases other than CO2 in mitigating additional man-made greenhouse warming. According to our preliminary estimates, CH4 could in the short term make a sizable contribution to the reduction of the greenhouse effect (because of its relatively short lifetime of 10 yr), as could N2O in the medium and long term (with a relatively long lifetime of 150 yr).With 7 Figures  相似文献   

5.
《Climate Policy》2001,1(3):363-380
With greenhouse gas (GHG) emissions decreasing by more than 18% in the 1990s, Germany appears to be among the few industrialised countries which are on track to meet the targets they committed themselves to under the Kyoto Protocol. This achievement may appear less remarkable if one takes into account that Germany benefited from so-called “wall-fall profits”, i.e. the breakdown and restructuring of the East German economy after reunification in 1990. Nevertheless, various policies at national, regional, and local levels were introduced in the 1990s in Germany, which also resulted in a reduction of CO2 and other greenhouse gases.The objective of this paper is to examine the underlying factors for the GHG emission trends in Germany in the 1990s. In particular, it is estimated to what extent the observed reductions are wall-fall profits, and to what extent they are the result of policy measures.The findings indicate that wall-fall profits account for almost 50% of the reduction of all six greenhouse gases. This share increases to 60% if only energy-related CO2 emissions are considered. At the same time, a diverse set of policies also had a significant effect on the reduction of greenhouse gases. Environmental policies directed towards non-CO2 gases were as important as policies addressing CO2 emissions. Overall, the contribution of all the policies combined was slightly higher than the impact of unification. Although Germany is on a reduction path to meet the Kyoto target, the likelihood of it achieving the more ambitious national target without additional policy efforts appears rather slim.  相似文献   

6.
The concept of global warming potential was developed as a relative measure of the potential effects on climate of a greenhouse gas as compared to CO2. In this paper a series of sensitivity studies examines several uncertainties in determination of Global Warming Potentials (GWPs). For example, the original evaluation of GWPs for the Intergovernmental Panel on Climate Change (IPCC, 1990) did not attempt to account for the possible sinks of carbon dioxide (CO2) that could balance the carbon cycle and produce atmospheric concentrations of CO2 that match observations. In this study, a balanced carbon cycle model is applied in calculation of the radiative forcing from CO2. Use of the balanced model produces up to 21% enhancement of the GWPs for most trace gases compared with the IPCC (1990) values for time horizons up to 100 years, but a decreasing enhancement with longer time horizons. Uncertainty limits of the fertilization feedback parameter contribute a 20% range in GWP values. Another systematic uncertainty in GWPs is the assumption of an equilibrium atmosphere (one in which the concentration of trace gases remains constant) versus a disequilibrium atmosphere (one in which the concentration of trace gases varies with time). The latter gives GWPs that are 19 to 32% greater than the former for a 100 year time horizons, depending upon the carbon dioxide emission scenario chosen. Five scenarios are employed: constant-concentration, constant-emission past 1990 and the three IPCC (1992) emission scenarios. For the analysis of uncertainties in atmospheric lifetime (τ) the GWP changes in direct proportion toτ for short-lived gases, but to a lesser extent for gases withτ greater than the time horizontal for the GWP calculation.  相似文献   

7.
With the continuing warming due to greenhouse gases concentration, it is important to examine the potential impacts on regional crop production spatially and temporally. We assessed China’s potential maize production at 50 × 50 km grid scale under climate change scenarios using modelling approach. Two climate changes scenarios (A2 and B2) and three time slices (2011–2040, 2041–2070, 2071–2100) produced by the PRECIS Regional Climate Model were used. Rain-fed and irrigated maize yields were simulated with the CERES-Maize model, with present optimum management practices. The model was run for 30 years of baseline climate and three time slices for the two climate change scenarios, without and with simulation of direct CO2 fertilization effects. Crop simulation results under climate change scenarios varied considerably between regions and years. Without the CO2 fertilization effect, China’s maize production was predicted to suffer a negative effect under both A2 and B2 scenarios for all time slices, with greatest production decreases in today’s major maize planting areas. When the CO2 fertilization effect is taken into account, production was predicted to increase for rain-fed maize but decrease for irrigated maize, under both A2 and B2 scenarios for most time periods.  相似文献   

8.
Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.  相似文献   

9.
Considered are the contribution of managed forests in the Russian Federation to the climate change softening and the forecast of their carbon-depositing potential in the period till 2050 under different scenarios of the forest management. The sink of CO2 to managed forests is estimated using the flow balance method. The CBM-CFS3 model worked out in the Canadian Forestry Service is used for predicting the carbon budget. It is found out that managed forests absorb 473.8 Mt of CO2 per year. The carbon sink is caused by the reduction of the volume of the forest use and by the regeneration of cutover stands of previous years. Depending on the conditions of the forest use, by 2020 the CO2 sink to managed forests will amount to 466–632 Mt/year and will be able to compensate from 21 to 29% of industrial emissions of greenhouse gases. The carbon absorption by managed forests will decrease to 105–235 Mt/year by 2050. To maintain and increase the carbon-depositing potential of managed forests, the Russian Federation needs the development of the system of purposeful activities on strengthening the protection against forest fires and on the intensification of forest reproduction.  相似文献   

10.
In this paper, we present results of simulationexperiments with the TIME-model on the issue ofmitigation strategies with regard to greenhouse gases.The TIME-model is an integrated system dynamics worldenergy model that takes into account the fact that the systemhas an inbuilt inertia and endogenouslearning-by-doing dynamics, besides the more commonelements of price-induced demand response and fuelsubstitution. First, we present four scenarios tohighlight the importance of assumptions on innovationsin energy technology in assessing the extent to whichCO2 emissions have to be reduced. The inertia ofthe energy system seems to make a rise ofCO2 emissions in the short term almostunavoidable. It is concluded that for the populationand economic growth assumptions of the IPCC IS92ascenario, only a combination of supply- anddemand-side oriented technological innovations incombination with policy measures can bring the targetof CO2-concentration stabilization at 550 ppmv bythe year 2100 within reach. This will probably beassociated with a temporary increase in the overallenergy expenditures in the world economy. Postponingthe policy measures will be more disadvantageous,and less innovation in energy technology willhappen.  相似文献   

11.
Legislation to decarbonise energy systems within overall greenhouse gas reduction targets represents an immense and unprecedented energy policy challenge. However there is a dichotomy between this level of policy ambition and prior modelling studies that find such targets economically, technologically and socially feasible under idealised ?Dfirst-best policies. This paper makes a significant contribution to current analytical efforts to account for realistic ?Dsecond-best climate mitigation policy implementation. This is achieved via a technical classification of secondbest common mode issues at a detailed national level: both internal (behavioural change, infrastructure implementation) and external (new technologies, resource availability). Under a combinatory second-best scenario, meeting targets greater than a 70% reduction in CO2 by 2050 entail costs above a subjective barrier of 1% of GDP, while extreme mitigation scenarios (>90% CO2 reduction) are infeasible. These high costs are equally due to disappointing progress in behavioural and technological mitigation efforts. Expensive second-best mitigation scenarios can still rely on extreme assumptions including the full deployment of the UK??s offshore wind resource or the complete diffusion of energy efficiency measures in end-use sectors. By demonstrating the fragilities of a low carbon energy system pathway, policy makers can explore protective and proactive strategies to ensure targets can actually be met. Additionally, systematic analysis of failure in stringent long term decarbonisation scenarios teaches energy analysts about the trade-offs in model efficacy vs. confidence.  相似文献   

12.
The greenhouse gases emission (CO2, CH4, and N2O) from domestic and international aviation in the Russian Federation is assessed. In 2007, the total emission of CO2, CH4, and N2O amounted to 18.4 million tons of CO2-equivalent, which is 21% below the 1990 level. Carbon dioxide dominates in the component composition of the emissions, its part in 2007 accounted for 99.1% of the emission. Taking into account the tendency towards increasing fuel consumption due to intense aircraft traffic it can be expected that compared to the present level the greenhouse gases emissions in 2012 and 2020 will increase by 15 and 45%, respectively. Accounting for the increased aircraft emissions as well as plans of foreign countries to include the international aviation into the scheme of greenhouse gases emission allowance (trade credits) it is expedient to make more precise the greenhouse gases emissions from the Russian aviation based on the detailed flight data for all types of the aircraft.  相似文献   

13.
We present emissions corridors for the 21st century reducing the risk of collapse of the Atlantic thermohaline circulation (THC) while considering expectations about the socio-economically acceptable pace of emissions reductions. Emissions corridors embrace the range of CO2 emissions that are compatible with normatively defined policy goals or ‘guardrails’. They are calculated along the conceptual and methodological lines of the tolerable windows approach. We investigate the sensitivity of the emissions corridors to key uncertain physical quantities (i.e. climate sensitivity and North Atlantic hydrological sensitivity, emissions of non-CO2 greenhouse gases and sulfate aerosols) as well as to the guardrails. Results indicate a large dependency of the width of the emissions corridor on climate and hydrological sensitivity: for low values of the climate and/or hydrological sensitivity, the corridor boundaries are far from being transgressed by business-as-usual emissions scenarios for the 21st century. In contrast, for high values of both quantities already low non-intervention scenarios leave the corridor in the early decades of this century. The width of the CO2 emissions corridor is also affected by the emissions pathway of non-CO2 greenhouse gases and sulfate aerosols, but to a lesser extent. We further find that the choice of the policy goal strongly influences the shape of the emissions corridor. Pursuit of a more ambitious THC target, for instance, tightens the corridor considerably. More strict expectations concerning the socio-economically admissible pace of emissions reduction (expressed in terms of a maximum emissions reduction rate and a transition time towards a de-carbonizing economy) act in the same direction. This indicates that a trade-off between THC and socio-economic guardrails may be unavoidable in the case of very tight emissions corridors.  相似文献   

14.
There is growing scientific and public concern that increasing concentrations of greenhouse gases in the atmosphere will produce global warming and other climatic changes. Although economic activity is the main source of greenhouse gas emissions, information and incentive problems make it difficult to translate concern about global warming into economic behaviour and policy conducive to reducing emissions. The paper considers a set of near term (carbon tax), intermediate term (afforestation, energy efficiency) and long term (new non-fossil fuel technologies) strategies for reducing CO2 in the atmosphere. Each strategy has useful attributes, but shortcomings or limitations too. While the near term and intermediate term strategies can slow and perhaps reverse the growth of CO2 emissions, only a successful long term strategy of fostering the development of some promising non-fossil fuel technologies, such as solar and solar-hydrogen, can eventually halt the build-up of CO2 in the atmosphere. Moreover, public investment in the development of new non-fossil fuel technologies would largely obviate the information and incentive problems that currently stand in the way of an economically viable greenhouse policy.  相似文献   

15.
The potential impact of climate variability and climate change on agricultural production in the United States and Canada varies generally by latitude. Largest reductions are projected in southern crop areas due to increased temperatures and reduced water availability. A longer growing season and projected increases in CO2 may enhance crop yields in northern growing areas. Major factors in these scenarios analyzes are increased drought tendencies and more extreme weather events, both of which are detrimental to agriculture. Increasing competition for water between agriculture and non-agricultural users also focuses attention on water management issues. Agriculture also has impact on the greenhouse gas balance. Forests and soils are natural sinks for CO2. Removal of forests and changes in land use, associated with the conversion from rural to urban domains, alters these natural sinks. Agricultural livestock and rice cultivation are leading contributors to methane emission into the atmosphere. The application of fertilizers is also a significant contributor to nitrous oxide emission into the atmosphere. Thus, efficient management strategies in agriculture can play an important role in managing the sources and sinks of greenhouse gases. Forest and land management can be effective tools in mitigating the greenhouse effect.  相似文献   

16.
Recent works with energy balance climate models and oceanic general circulation models have assessed the potential role of the world ocean for climatic changes on a decadal to secular time scale. This scientific challenge is illustrated by estimating the response of the global temperature to changes in trace gas concentration from the pre-industrial epoch to the middle of the next century. A simple energetic formulation is given to estimate the effect on global equilibrium temperature of a fixed instantaneous radiative forcing and of a time-dependent radiative forcing. An atmospheric energy balance model couple to a box-advection-diffusion ocean model is then used to estimate the past and future global climalic transient response to trace-gas concentration changes. The time-dependent radiative perturbation is estimated from a revised approximate radiative parameterization, and the recent reference set of trace gas scenarios proposed by Wuebbles et al. (1984) are adopted as standard scenarios. Similar computations for the past and future have recently been undertaken by Wigley (1985), but using a purely diffusive ocean and slightly different trace gas scenarios. The skill of the socalled standard experiment is finally assessed by examining the model sensitivity of different parameters such as the equilibrium surface air temperature change for a doubled CO2 concentration [T ae (2×CO2)], the heat exchange with the deeper ocean and the trace gas scenarios. For T ae (2×CO2) between 1 K and 5 K, the following main results are obtained: (i) for a pre-industrial CO2, concentration of 270 ppmv, the surface air warming between 1850 and 1980 ranges between 0.4 and 1.4 K (if a pre-industrial CO2 concentration of 290 ppmv is chosen, the range is between 0.3 and 1 K); (ii) by comparison with the instantaneous equilibrium computations, the deeper ocean inertia induces a delay which amounts to between 6 years [for lower T ae (2×CO2)] and 23 years [for higher Tae(2×CO2)] in 1980; (iii) for the standard future CO2 and other trace gas scenarios of Wuebbles et al., the surface air warming between 1980 and 2050 is calculated to range between 0.9 and 3.4 K, with a delay amounting to between 7 years and 32 years in 2050 when compared to equilibrium computations.  相似文献   

17.
Climate change and critical thresholds in China’s food security   总被引:2,自引:0,他引:2  
Identification of ‘critical thresholds’ of temperature increase is an essential task for inform policy decisions on establishing greenhouse gas (GHG) emission targets. We use the A2 (medium-high GHG emission pathway) and B2 (medium-low) climate change scenarios produced by the Regional Climate Model PRECIS, the crop model – CERES, and socio-economic scenarios described by IPCC SRES, to simulate the average yield changes per hectare of three main grain crops (rice, wheat, and maize) at 50 km × 50 km scale. The threshold of food production to temperature increases was analyzed based on the relationship between yield changes and temperature rise, and then food security was discussed corresponding to each IPCC SRES scenario. The results show that without the CO2 fertilization effect in the analysis, the yield per hectare for the three crops would fall consistently as temperature rises beyond 2.5 ^C; when the CO2 fertilization effect was included in the simulation, there were no adverse impacts on China’s food production under the projected range of temperature rise (0.9–3.9 ^C). A critical threshold of temperature increase was not found for food production. When the socio-economic scenarios, agricultural technology development and international trade were incorporated in the analysis, China’s internal food production would meet a critical threshold of basic demand (300 kg/capita) while it would not under A2 (no CO2 fertilization); whereas basic food demand would be satisfied under both A2 and B2, and would even meet a higher food demand threshold required to sustain economic growth (400 kg/capita) under B2, when CO2 fertilization was considered.  相似文献   

18.
We use recent advances in time series econometrics to estimate the relation among emissions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models are estimated and specified to answer two questions; (1) does human activity affect global surface temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful relation between radiative forcing and global surface temperature. A simple model based on these results indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the change in temperature over the last 130 years. The regression results also indicate that increases in surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere in a way that increases its atmospheric concentration. Finally, the regression results for methane hint that higher temperatures may increase its atmospheric concentration, but this effect is not estimated precisely.  相似文献   

19.
A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth??s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.  相似文献   

20.
Wilhelm May 《Climate Dynamics》2008,31(2-3):283-313
In this study, concentrations of the well-mixed greenhouse gases as well as the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are prescribed to the ECHAM5/MPI-OM coupled climate model so that the simulated global warming does not exceed 2°C relative to pre-industrial times. The climatic changes associated with this so-called “2°C-stabilization” scenario are assessed in further detail, considering a variety of meteorological and oceanic variables. The climatic changes associated with such a relatively weak climate forcing supplement the recently published fourth assessment report by the IPCC in that such a stabilization scenario can only be achieved by mitigation initiatives. Also, the impact of the anthropogenic sulphate aerosol load and stratospheric ozone concentrations on the simulated climatic changes is investigated. For this particular climate model, the 2°C-stabilization scenario is characterized by the following atmospheric concentrations of the well-mixed greenhouse gases: 418 ppm (CO2), 2,026 ppb (CH4), and 331 ppb (N2O), 786 ppt (CFC-11) and 486 ppt (CFC-12), respectively. These greenhouse gas concentrations correspond to those for 2020 according to the SRES A1B scenario. At the same time, the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are changed to the level in 2100 (again, according to the SRES A1B scenario), with a global anthropogenic sulphur dioxide emission of 28 TgS/year leading to a global anthropogenic sulphate aerosol load of 0.23 TgS. The future changes in climate associated with the 2°C-stabilization scenario show many of the typical features of other climate change scenarios, including those associated with stronger climatic forcings. That are a pronounced warming, particularly at high latitudes accompanied by a marked reduction of the sea-ice cover, a substantial increase in precipitation in the tropics as well as at mid- and high latitudes in both hemispheres but a marked reduction in the subtropics, a significant strengthening of the meridional temperature gradient between the tropical upper troposphere and the lower stratosphere in the extratropics accompanied by a pronounced intensification of the westerly winds in the lower stratosphere, and a strengthening of the westerly winds in the Southern Hemisphere extratropics throughout the troposphere. The magnitudes of these changes, however, are somewhat weaker than for the scenarios associated with stronger global warming due to stronger climatic forcings, such as the SRES A1B scenario. Some of the climatic changes associated with the 2°C-stabilization are relatively strong with respect to the magnitude of the simulated global warming, i.e., the pronounced warming and sea-ice reduction in the Arctic region, the strengthening of the meridional temperature gradient at the northern high latitudes and the general increase in precipitation. Other climatic changes, i.e., the El Niño like warming pattern in the tropical Pacific Ocean and the corresponding changes in the distribution of precipitation in the tropics and in the Southern Oscillation, are not as markedly pronounced as for the scenarios with a stronger global warming. A higher anthropogenic sulphate aerosol load (for 2030 as compared to the level in 2100 according to the SRES A1B scenario) generally weakens the future changes in climate, particularly for precipitation. The most pronounced effects occur in the Northern Hemisphere and in the tropics, where also the main sources of anthropogenic sulphate aerosols are located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号