共查询到20条相似文献,搜索用时 140 毫秒
1.
The eruption of Mount Pinatubo in June 1991 altered the conditions of the surrounding river catchments. Pyroclastic flows and tephra fall were deposited over extensive areas, stripping off the forest cover and burying drainage divides. These recent deposits are very loosely consolidated and generally consist of sand‐sized particles, which commonly mobilize into lahars in response to rainfall of a certain magnitude. Several devastating lahar occurrences have buried settlements covering tens to several hundred square kilometres in a single event. Correlation of storm rainfall intensities and durations with lahar activity as recorded by acoustic flow monitors is used to investigate trends in the initiation conditions for lahar activity. This research confirms that the relationships of rainfall intensity and duration with lahar initiation threshold values are not linear but rather approximate a power relation. Different relations were found for lahar initiation in different years, from 1991 to 1997, as a result of the dynamic changes in hydrologic and geomorphic conditions of the affected catchments. Data from acoustic flow monitors are used to distinguish debris flow and hyperconcentrated flow activity from that of muddy water. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara 相似文献
3.
Co‐evolution of riparian vegetation and channel dynamics in an aggrading braided river system,Mount Pinatubo,Philippines 下载免费PDF全文
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
The prehistoric eruptions of Mount Pinatubo have followed a cycle: centuries of repose terminated by a caldera-forming eruption with large pyroclastic flows; a post-eruption aftermath of rain-triggered lahars in surrounding drainages and dome-building that fills the caldera; and then another long quiescent period. During and after the eruptions lahars descending along volcano channels may block tributaries from watersheds beyond Pinatubo, generating natural lakes. Since the 1991 eruption, the Mapanuepe River valley in the southwestern sector of the volcano has been the site of a large lahar-dammed lake. Geologic evidence indicates that similar lakes have occupied this site at least twice before. An Ayta legend collected decades before Mount Pinatubo was recognized as a volcano describes what is probably the younger of these lakes, and the caldera-forming eruption that destroyed it. 相似文献
5.
Karen B. Gran 《地球表面变化过程与地形》2012,37(9):1012-1022
Declining sand inputs to a channel with bimodal bed sediment can lead to degradation, armoring, and reduced bedload transport rates. Where sand loading is episodic, channels may alternate between high‐sand and low‐sand conditions, with ensuing responses in bed texture and bedload transport rates. The effects of episodic sand loading are explored through flow, grain size, and bedload transport measurements on the Pasig‐Potrero River, a sediment‐rich channel draining Mount Pinatubo, Philippines. Sand loading on the Pasig‐Potrero River is highly seasonal, and channel adjustments between seasons are dramatic. In the rainy season, inputs from sand‐rich 1991 eruption deposits lead to active, sand‐bedded, braided channels. In the dry season, many precipitation‐driven sand sources are cut off, leading to incision, armoring, and significantly lower bedload transport rates. This seasonal transition offers an excellent opportunity to examine models of degradation, incision, and armoring as well as the effectiveness of sediment transport models that explicitly encapsulate the importance of sand on transport rates. During the fall 2009 seasonal transition, 7·6 km of channel incised and armored, carving a 2–3 m deep channel on the upper alluvial fan. Bedload transport rates measured in the August 2009 rainy season were over four orders of magnitude greater than gravel‐bedded dry‐season channels surveyed in January 2010, despite having similar shear stress and unit discharge conditions. Within dry‐season incised channels, bed armoring is rapid, leading to an abrupt gravel‐sand transition. Bedload transport rates adjust more slowly, creating a lag between armoring and commensurate reductions in transport. Seasonal channel incision occurred in steps, aided by lateral migration into sand‐rich banks. These lateral sand inputs may increase armor layer mobility, renewing incision, and forming terraces within the incised seasonal channel. The seasonal incised channel is currently being reset by precipitation‐driven sand loading during the next rainy season, and the cycle begins again. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
The Reporoa Caldera occupies the northern end of the Reporoa Depression, previously described as a tectonic fault-angle depression. Earlier confirmation of the topographic basin as a caldera had been hindered by the lack of an associated young pyroclastic flow deposit of large enough volume to have caused caldera collapse. New exposures on the eastern margin of the Reporoa basin reveal thick lithic lag breccias (>30 m) interbedded within the 0.24 Ma Kaingaroa Ignimbrites. These ignimbrites were previously attributed to the adjacent Okataina Volcanic Centre. Lag breccia thicknesses and maximum clast sizes decrease rapidly outward from the caldera rim, and discrete breccias are absent from ignimbrite sections more than 3 km from the rim. The lithic lag breccias, together with structural and geophysical evidence, confirm Reporoa Caldera as the source of the c. 100 km3 Kaingaroa Ignimbrites, adding another major rhyolitic volcanic centre to the seven previously recognized in the Taupo Volcanic Zone. Other, older, calderas may also be present in the Reporoa Depression. 相似文献
7.
Groundwater Rn concentration has been monitored at several sites in the Campi Flegrei Caldera since the time of the last episode of bradyseismic activity. The results concerning the period 1983–88 indicate that the Rn concentration is spatially variable due to the different chemico-physical characteristics of the waters or structural features. Rn concentration is generally influenced by the long-term changes of meteorological factors. Rainfalls appear to affect the Rn content of the most superficial aquifers. Several short-term spike-like Rn anomalies have been detected both during and after the period of the bradyseismic crisis. They do not show correlation with temporal changes of the pH and/or temperature of waters. A systematic correlation between Rn anomalies and episodic strong rainfall events is also absent. Furthermore, a clear relationship between Rn spikes and both uplift velocity changes and seismic activity has not been found.The overall evidence makes it very difficult to understand the temporal changes of groundwater Rn concentration that have occurred during and after the 1982–84 bradyseismic crisis. Nevertheless, a clear causal relationship between Rn concentration and the dynamics of the bradyseism is observed in some monitored sites. Its appearance may have been favoured by the low Rn concentration in the groundwaters during periods of quiescent activity. 相似文献
8.
Andrea Di Muro John Pallister Benoit Villemant Chris Newhall Michel Semet Mylene Martinez Clarisse Mariet 《Journal of Volcanology and Geothermal Research》2008
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression. 相似文献
9.
Edifices of stratocones and domes are often situated eccentrically above shallow silicic magma reservoirs. Evacuation of such reservoirs forms collapse calderas commonly surrounded by remnants of one or several volcanic cones that appear variously affected and destabilized. We studied morphologies of six calderas in Kamchatka, Russia, with diameters of 4 to 12 km. Edifices affected by caldera subsidence have residual heights of 250–800 m, and typical amphitheater-like depressions opening toward the calderas. The amphitheaters closely resemble horseshoe-shaped craters formed by large-scale flank failures of volcanoes with development of debris avalanches. Where caldera boundaries intersect such cones, the caldera margins have notable outward embayments. We therefore hypothesize that in the process of caldera formation, these eccentrically situated edifices were partly displaced and destabilized, causing large-scale landslides. The landslide masses are then transformed into debris avalanches and emplaced inside the developing caldera basins. To test this hypothesis, we carried out sand-box analogue experiments, in which caldera formation (modeled by evacuation of a rubber balloon) was simulated. The deformation of volcanic cones was studied by placing sand-cones in the vicinity of the expected caldera rim. At the initial stage of the modeled subsidence, the propagating ring fault of the caldera bifurcates within the affected cone into two faults, the outermost of which is notably curved outward off the caldera center. The two faults dissect the cone into three parts: (1) a stable outer part, (2) a highly unstable and subsiding intracaldera part, and (3) a subsiding graben structure between parts (1) and (2). Further progression of the caldera subsidence is likely to cause failure of parts (2) and (3) with failed material sliding into the caldera basin and with formation of an amphitheater-like depression oriented toward the developing caldera. The mass of material which is liable to slide into the caldera basin, and the shape of the resulted amphitheater are a function of the relative position of the caldera ring fault and the base of the cone. A cone situated mostly outside the ring fault is affected to a minor degree by caldera subsidence and collapses with formation of a narrow amphitheater deeply incised into the cone, having a small opening angle. Accordingly, the caldera exhibits a prominent outward embayment. By contrast, collapse of a cone initially situated mostly inside the caldera results in a broad amphitheater with a large opening angle, i.e. the embayment of the caldera rim is negligible. The relationships between the relative position of an edifice above the caldera fault and the opening angle of the formed amphitheater are similar for the modeled and the natural cases of caldera/cone interactions. Thus, our experiments support the hypothesis that volcanic edifices affected by caldera subsidence can experience large-scale failures with formation of indicative amphitheaters oriented toward the caldera basins. More generally, the scalloped appearance of boundaries of calderas in contact with pre-caldera topographic highs can be explained by the gravitational influence of topography on the process of caldera formation.Editorial responsibility: J. Stix 相似文献
10.
M. Bisson M. T. Pareschi G. Zanchetta R. Sulpizio R. Santacroce 《Bulletin of Volcanology》2007,70(2):157-167
The Campania Region (southern Italy) is characterized by the frequent occurrence of volcaniclastic debris flows that damage
property and loss of life (more than 170 deaths between 1996 and 1999). Historical investigation allowed the identification
of more than 500 events during the last four centuries; in particular, more than half of these occurred in the last 100 years,
causing hundreds of deaths. The aim of this paper is to quantify debris-flow hazard potential in the Campania Region. To this
end, we compared several elements such as the thickness distribution of pyroclastic fall deposits from the last 18 ka of the
Vesuvius and Phlegrean Fields volcanoes, the slopes of relieves, and the historical record of volcaniclastic debris flows
from A.D. 1500 to the present. Results show that flow occurrence is not only a function of the cumulative thickness of past
pyroclastic fall deposits but also depends on the age of emplacement. Deposits younger than 10 ka (Holocene eruptions) apparently
increase the risk of debris flows, while those older than 10 ka (Late Pleistocene eruptions) seem to play a less prominent
role, which is probably due to different climatic conditions, and therefore different rates of erosion of pyroclastic falls
between the Holocene and the Late Pleistocene. Based on the above considerations, we compiled a large-scale debris-flow hazard
map of the study area in which five main hazard zones are identified: very low, low, moderate, high, and very high. 相似文献
11.
Study of Volcanic Sources at Long Valley Caldera,California, Using Gravity Data and a Genetic Algorithm Inversion Technique 总被引:2,自引:0,他引:2
We model the source inflation of the Long Valley Caldera, California, using a genetic algorithm technique and micro-gravity data. While there have been numerous attempts to model the magma injection at Long Valley Caldera from deformation data, this has proven difficult given the complicated spatial and temporal nature of the volcanic source. Recent work illustrates the effectiveness of considering micro-gravity measurements in volcanic areas. A genetic algorithm is a problem-solving technique which combines genetic and prescribed random information exchange. We perform two inversions, one for a single spherical point source and another for two-sources that might represent a more spatially distributed source. The forward model we use to interpret the results is the elastic-gravitational Earth model which takes into account the source mass and its interaction with the gravity field. The results demonstrate the need to incorporate more variations in the model, including another source geometry and the faulting mechanism. In order to provide better constraints on intrusion volumes, future work should include the joint inversion of gravity and deformation data during the same epoch. 相似文献
12.
The June 15, 1991 climactic eruption of Mt. Pinatubo produced an extensive, largely co-ignimbrite-derived airfall ash layer on Luzon Island and across the central South China Sea. The layer covers an area of ~4×105 km2 with a volume of 5.5 km3. Near the coast of Luzon, the deposit consists of two units: a normally graded basal ash bed, unimodal in grain size, and a finer-grained, internally structureless upper ash bed showing grain size bimodality. With increasing distance from the source, the coarse particle populations of the two units merge and migrate towards a near-constant fine population (~11 m); the distal region is covered by a fine-mode dominated, virtually ungraded single ash layer. The reversal of the winds from easterly directions at upper-tropospheric and stratospheric levels to westerly directions in the middle and lower troposphere indicates that both the coarse- and fine-mode components fell out from high-altitude eruption clouds. The high-velocity upper-level winds, however, would have transported fine-grained ash particles far beyond the South China Sea, which suggests that their settling was accelerated by aggregation. The boundary between the units thus marks a change from fallout of predominantly discrete pyroclasts to simultaneous fallout of aggregated fines and freely falling, coarse-grained particles. The particle populations composing the upper ash bed were almost completely removed from the proximal areas by the upper-level winds. At lower elevations, the counterclockwise circulation of a typhoon over the coastal area advected the ash south and eastward, producing a thickness maximum in the medial region (at about 160 km from source). The strong displacement of fines, possibly aided by wind turbulence, led to a break in bulk tephra thinning rates close to the coastline. In the distal region, outside the influence of the typhoon, southwest monsoonal winds caused a distinct lobe axis inflection and thickness asymmetry. Within this region, at about 420 km from source, fallout of particle aggregates created a second thickness maximum. Comparison of the field data with previous experimental observations and tephra flux records in the deep sea (Wiesner et al. 1995; Carey 1997; McCool 2002) implies that the transport of ash in the water column was largely determined by vertical density currents. Differences in the reaction of coarse and fine particles to turbulence in the descending plumes probably suppressed the segregation of fines but allowed the coarser pyroclasts to maintain their initial order of arrival at the sea surface. Considering typical fall rates of convective plumes, modifications of the initial fallout position of the particles by the South China Sea current system are on the order of only a few kilometers. The results suggest that convective sedimentation processes ensure the preservation of atmospheric particle transport directions, distances, and fallout modes in the deep sea.Editorial responsibility: R. CioniAn erratum to this article can be found at 相似文献
13.
Lee Benda 《地球表面变化过程与地形》1990,15(5):457-466
Debris flows are one of the most important processes which influence the morphology of channels and valley floors in the Oregon Coast Range. Debris flows that initiate in bedrock hollows at heads of first-order basins erode the long-accumulated sediment and organic debris from the floors of headwater, first- and second-order channels. This material is deposited on valley floors in the form of fans, levees, and terraces. In channels, deposits of debris flows control the distribution of boulders. The stochastic nature of sediment supply to alluvial channels by debris flows promotes cycling between channel aggradation which results in a gravel-bed morphology, and channel degradation which results in a mixed bedrock- and boulder-bed morphology. Temporal and spatial variability of channel-bed morphology is expected in other landscapes where debris flows are an important process. 相似文献
14.
T. -T. Yu J. Fernndez C. -L. Tseng M. J. Sevilla V. Araa 《Journal of Volcanology and Geothermal Research》2000,103(1-4)
A 17-benchmark geodetic network in the volcanic area of the Teide Caldera, Canary Islands has been utilised several times since 1982 to detect crustal movements associated with volcanic activity within the network, as well as a procedure for solving configuration problems. The network is located on the mid-western side of the Caldera, where there are two different morphological zones that both have benchmarks. The authors performed a sensitivity test of this geodetic network for volcano monitoring purposes. To do so, we use a deformation model to calculate surface displacement caused by a dike intrusion in a homogenous half space. The depth and location of dike are changed to study the variation of the effects produced (displacements). The size and location of the intruded dike are found to play a major role in determining both the displacement pattern and magnitude. When the dike is close to the surface, there is an inversion of the surface displacement pattern and very large surface displacement at certain benchmarks. Such phenomena can serve as precursors of such dike eruptions. Our study show a clear need to extend the existing geodetic network to cover the full island for volcano monitoring purposes. 相似文献
15.
Abstract Field, geochemical and geophysical evidence show that the southern Zambales Ophiolite Complex attained its present-day configuration through the juxtapositioning of an arc terrane (San Antonio massif) to a back-arc crust (Cabangan massif). The San Antonio massif manifests island arc-related characteristics (i.e. spinel XCr [Cr/(Cr + Al)] >0.60; mostly plagioclase An92–95; pyroxene crystallizing ahead of plagioclase; orthopyroxene as an early, major crystallizing phase) which cannot be directly parental to the Cabangan massif transitional mid-ocean ridge basalt to island arc tholeiitic volcanic carapace. The two massifs are believed to be separated by a left-lateral strike–slip fault, the Subic Bay Fault Zone. Apart from the presence of highly sheared, allochthonous outcrops, the Subic Bay Fault Zone is generally defined by northwest–southeast trending magnetic and bouguer anomalies. The San Antonio massif was translated southward from the northern part of the Zambales Ophiolite Complex through the Subic Bay Fault Zone. This resulted into its suturing with the Cabangan massif and could have led to the formation of the present-day Subic Bay. 相似文献
16.
Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity,
ranging in clast density from 700 to 2580 kg m–3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates
of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted
material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying
extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in
all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0–22%). We infer that syn-eruptive volatile exsolution from
magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within
magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28–262 min) suggests
that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional
shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation
and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization
proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose
that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved
volatiles during the previous explosive event. If plug thickness grew proportionally to the square root of time, and if magma
pressurization increased during the eruptive sequence, the frequency of eruptive pulses may have been modulated by degassing
of magma within the conduit. Dense clasts in surge deposits probably represent plug material entrained by each subsequent
explosive event.
Received: 4 December 1997 / Accepted: 13 September 1998 相似文献
17.
Abstract A Middle Pleistocene widespread tephra referred to here as Hakkoda–Kokumoto Tephra (Hkd–Ku) has been newly recognized. Hkd–Ku, derived from the Hakkoda Caldera located in northernmost Honshu Is. of northeast Japan, covers much of Honshu Is. At the type locality in the proximal area, Hkd–Ku comprises Plinian pumice deposits and an immediately overlying ignimbrite. The fine vitric ash nature of the distal ash‐fall deposits of Hkd–Ku suggests that they are coignimbrite ash‐fall deposits. Hkd–Ku was identified using a combination of refractive indices and chemical compositions of major, trace and rare earth elements of glass shards, heavy mineral content, refractive indices of orthopyroxene and paleomagnetic polarity. On the basis of these properties, Hkd–Ku was identified in Oga and Boso Peninsulas and Osaka Plain, 830 km southwest of the source. Stratigraphic positions in Boso Peninsula and Osaka Plain within marine sediments that have a reliable chronology based on oxygen‐isotope, and litho‐, bio‐, magneto‐ and tephrostratigraphy indicate that the age of Hkd–Ku is ca 760 ka, positioned in the transition between marine oxygen‐isotope stages 19.1 and 18.4. The widespread occurrence of Hkd–Ku providing a tie line between many different Pleistocene sections over a distance of 800 km is a key marker horizon in the early part of the Middle Pleistocene. This tephra gives a time control point of ca 760 ka to marine sediments in the Oga Peninsula – where no datum plane exists between the Brunhes–Matuyama chron boundary and oxygen‐isotope stage 12 – and to the volcanostratigraphy of the Hakkoda Caldera. The distribution of Hkd–Ku showing emplacement of coignimbrite ash‐fall deposits in the area 830 km southwest of the source emphasizes the upwind transport direction, relative to the prevailing westerly winds, typical of other coignimbrite ash‐fall deposits in the Japanese islands. 相似文献
18.
19.
The complex eruption sequence from the ∼1000 A.D. caldera-forming eruption of Volcán Ceboruco, known as the Jala Pumice, offers
an exceptional opportunity to examine how pyroclastic material is transported and deposited from pyroclastic density currents
over variable topography. Three main pyroclastic surge deposits (S1, S2, and S3) and two pyroclastic flow deposits (Marquesado
and North-Flank PFDs) were emplaced during this eruption. Pyroclastic surge deposits are massive, planar, or cross-bedded,
poor-to-well sorted, and display fluctuations in thickness, median diameter, sorting, and lithology as a function of distance,
topography, and flow dynamics. Marquesado pyroclastic flow deposits reveal lateral variations from massive, poorly sorted
deposits located within 5 km of Ceboruco to planar bedded, moderately well sorted deposits located >15 km away over the nearly
horizontal topography to the south of Ceboruco. North-Flank pyroclastic flow deposits also reveal lateral variations from
massive, poorly sorted deposits located within 4 km of Ceboruco to planar bedded, moderately well sorted deposits located
8 km away atop an escarpment that steeply rises 230 m from the northern valley floor. Field observations, granulometric analyses,
component analyses, and crystal sedimentation calculations along flow-parallel sampling transects all suggest that both surges
and flows were density stratified currents, where deposition occurred from a basal region of higher particle concentration
that was supplied from an overlying dilute layer that transports particles in suspension. This supports the idea of a transition
between “flow” and “surge” end members with variations in particle concentration. Topography greatly affects the transport
and depositional capacity of the pyroclastic density currents as a result of “blocking”, either by topographic obstacles or
by abrupt breaks at the base of volcano slopes, whereas the origin of Jala Pumice surge deposits (phreatomagmatic versus magmatic)
appears to have little impact on their flow dynamics.
Editorial responsibility: A.W. Woods
This revised version was published in February 2005 with corrections to the title.
An erratum to this article is available at . 相似文献
20.
浮游植物对湖泊水体生态重建的响应——以太湖五里湖大型围隔示范工程为例 总被引:5,自引:4,他引:5
根据太湖五里湖湾生态重建大型围隔示范工程的现场观测结果,分析了湖泊生态重建措施对浮游植物的影响,结果显示:(1)在生态重建的第一年,尽管生态重建区内种植了大量水生植物,水体氮磷含量也有较大幅度的下降,水体透明度也被提高了近一倍,但是藻类却大量生长,并暴发了蓝藻水华;第二年,生态重建区的环境条件逐渐对藻类(包括蓝藻和其中的微囊藻)产生了抑制作用,开始出现藻类生物量下降趋势;表明生态重建措施(以水生植被重建为中心的生态系统重建组合措施)可以在较短时间内(当年)建立起一定规模的水生植物群落,有效降低水体氮磷营养盐,提高水体透明度,但要在较短时间内(2年内)完善一个较大的水生态系统结构、有效降低藻类生物量(特别是夏季)有一定困难.(2)尽管氮磷营养盐对水体藻类总量增加有较大影响,但并不是蓝藻大量暴发的决定因素,上行作用力对蓝藻的控制(bottom-up effort)表现弱于下行作用力(top-down effort).(3)较低的TN/TP比值(15.9-35.6,平均30.5)既是蓝藻水华暴发的原因,也是其作用的结果,其可能有利于蓝藻的大量暴发.(4)生态重建措施较大幅度地改善了水环境,但并没有显著提高藻类多样性指数(Shannon index),因此,单凭藻类多样性指数并不能完全反映水环境改善状况,在评价水环境质量方面需要结合其它多种指标进行综合评估. 相似文献