首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a geographical information system (GIS) which manages geotechnical data obtained from detailed geotechnical surveys as well as from in situ observations in Athens, Greece. Thoroughly examined data from more than 2,000 exploratory boreholes and trial pits located in the wider area of Athens have been incorporated using a relational database system. From the analysis of these results, thematic maps are compiled to illustrate the distribution of engineering geological information (e.g. the depth of the “Athens schist” head). In addition, a methodology for an automated GIS-aided seismic microzonation study is outlined and is being employed taking into account the aforementioned geotechnical and engineering geological information, as well as existing seismological data to estimate the variability of seismic ground motion for the southern part of Athens.  相似文献   

2.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

3.
The maximum expected ground motion in Greece is estimated for shallow earthquakes using a deterministic seismic hazard analysis (DSHA). In order to accomplish this analysis the input data include an homogeneous catalogue of earthquakes for the period 426 BC–2003, a seismogenic source model with representative focal mechanisms and a set of velocity models. Because of the discrete character of the earthquake catalogue and of errors in location of single seismic events, a smoothing algorithm is applied to the catalogue of the main shocks to get a spatially smoothed distribution of magnitude. Based on the selected input parameters synthetic seismograms for an upper frequency content of 1 Hz are computed on a grid of 0.2° × 0.2°. The resultant horizontal components for displacement, velocity, acceleration and DGA (Design Ground Acceleration) are mapped. The maps which depict these results cannot be compared with previously published maps based on probabilistic methodologies as the latter were compiled for a mean return period of 476 years. Therefore, in order to validate our deterministic analysis, the final results are compared with PGA estimated from the maximum observed macroseismic intensity in Greece during the period 426 BC–2003.Since the results are obtained for point sources, with the frequency content scaled with moment magnitude, some sensitivity tests are performed to assess the influence of the finite extent of fault related to large events. Sensitivity tests are also performed to investigate the changes in the peak ground motion quantities when varying the crustal velocity models in some seismogenic areas. The ratios and the relative differences between the results obtained using different models are mapped and their mean value computed. The results highlight the importance in the deterministic approach of using good and reliable velocity models.  相似文献   

4.
Advances in earthquake data acquisition and processing techniques have allowed for improved quantification of source parameters for local Australian earthquakes. Until recently, only hypocentral locations and local magnitudes (ML) had been determined routinely, with little attention given to the inversion of additional source parameters. The present study uses these new source data (e.g. seismic moment, stress drop, source dimensions) to further extend our understanding of seismicity and the continental stress regime of the Australian landmass and its peripheral regions.

Earthquake activity within Australia is typically low, and the proportion of small to large events (i.e. the b value) is also low. It is observed that average stress drops for southeastern Australian earthquakes appear to increase with seismic moment to relatively high levels, up to approximately 10 MPa for ML 5.0 earthquakes. This is thought to be indicative of high compressive crustal stress, coupled with strong rocks and fault asperities. Furthermore, the data indicates that shallow focus earthquakes (shallower than 6 km) appear to produce lower than average stress drops than deeper earthquakes (between 6 and 20 km) with similar moment.

Recurrence estimates were obtained for a discrete seismogenic zone in southeastern Australia. Decreasing b values with increasing focal depth for this zone indicate that larger earthquakes (with high stress drops) tend to occur deeper in the crust. This may offer an explanation for the apparent increase of stress drop with hypocentral depth. Consequently, earthquake hazard estimates that assume a uniform Gutenburg–Richter distribution with depth (i.e. constant b value) may be too conservative and therefore slightly overestimate seismic hazard for surface sites in southeastern Australia.  相似文献   


5.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

6.
In the present study, the seismic hazard in the city of Patras, central Greece, is estimated. The computations are based on a slightly modified version of the method proposed by Cornell, allowing the introduction of individual attenuation laws for each seismic source.The obtained results emphasize the dependence of hazard on attenuation and the importance of the use of local attenuation laws in seismic hazard assessment.Paper presented at the 21st General Assembly of the European Seismological Commission, held in Sofia, 1988.  相似文献   

7.
地震危险性、地震危害性和地震易损性   总被引:1,自引:0,他引:1  
做好城市防震减灾工作 ,关键是对未来可能遭遇地震灾害定量化预测。本文论述地震灾害定量化的三要素 :地震危险性 ,地震危害性和地震易损性 ,它们概念完全不同 ,且很容易混淆 ,但又存在因与果的关系。本文还简要介绍厦门市地震科技工作者开展的“闽南地区综合防震减灾示范工程”。  相似文献   

8.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   


9.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

10.
本论文结合“吉林省和龙市地质灾害调查与区划”的实际研究工作,利用现场勘察和调查收集灾害点和区域地质环境数据,选取灾害点密度、灾害面积系数、地形地貌类型等9个统计量,运用模糊聚类和图论的数学方法,对和龙市进行地质灾害易发区划分。根据地质灾害易发程度,将和龙市分为4个区。划分结果比较符合和龙市区域地质灾害发育实际情况。研究结果为和龙市进行防灾减灾工作,合理制定发展规划提供科学依据。  相似文献   

11.
Probabilistic seismic hazard maps in term of Modified Mercalli (MM) intensity are derived by applying the Cornell-McGuire method to four earthquake source zones in Panama and adjacent areas. The maps contain estimates of the maximum MM intensity for return periods of 5, 25 and 100 yr. The earthquake phenomenon is based on the point source model. The probabilistic iso-intensity map for a return period of 50 yr indicates that the Panama Suture Zone (PSZ) could experience a maximum (MM) intensity IX, and the Panama Fracture Zone (PFZ) an MM intensity VIII, for the rest of the area this varies from IV up to VIII. The present study intends to serve as a reference for more advanced approaches, to stimulate discussions and suggestions on the data base, assumptions and inputs, and path for the risk based assessment of the seismic hazard in the site selection and in the design of common buildings and engineering.  相似文献   

12.
The definition of earthquake sources in the Panama region on the basis of both tectonics and average seismicity rates, have recently led to the concept of a microplate surrounded by seismically active areas. The effects of these earthquakes on the place where the most important concentration of investments and population is located, the capital city of Panama, are analyzed in this paper using statistical approaches.The parameters of Gumbel's Type-I distribution of extreme values for a continuous interval of 60 yr annual maximum magnitudes were used to make probabilistic estimations of the seismic hazard in Panama City. An earthquake with magnitude 7.5 is capable of producing a modified Mercalli intensity VII in Panama City, provided the source distance is of the order of 100 km. This earthquake has a probability of occurrence of 69% in 50 yr.  相似文献   

13.
The seismic hazard of Sannio-Matese is calculated using a new seismogenetic zoning of southern Italy of seven areas and different, azimuth-dependent, attenuation laws. Various approaches (Gumbel's first and third asymptotic distribution, Cornell) lead to similar results for the different exposure times considered (100 and 200 years) and probability levels (37 and 68%). The present seismic regulation proposed in 1980 by the Italian National Council for Researches, and based on a different approach, is, in general, confirmed by the results.  相似文献   

14.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

15.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

16.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

17.
This paper is intended to provide a perspective on the use of paleoseismological studies in the seismic hazard assessment of critical facilities, such as dams, chemical/petrochemical facilities and nuclear power plants. In particular, the use of data obtained from paleoseismological studies for probabilistic seismic hazard analyses, when the required probabilities of exceedance are very low (e.g. 10− 6–10− 7) is considered. Recent revisions to the IAEA Safety Standards that provide guidance to Member States in their work related to the seismic safety of nuclear power plants are presented to illustrate the importance of this emerging discipline.  相似文献   

18.
The EGO method, developed by Egozcue et al. and the SRAMSC method, originally developed by Cornell and later programmed by McGuire, to assess the seismic hazard, are compared for the low seismicity area Belgium, The Netherlands, and NW Germany. Using the same input data, the results of the EGO method without the majority criterion and the SRAMSC method with upper bound XII agree very well. The influence of the zoning is investigated for the EGO method. It is not necessary to define the zones for the EGO method so strictly as for the SRAMSC method, but too wide zones can give bad results.  相似文献   

19.
Time independent seismic hazard analysis in Alborz and surrounding area   总被引:1,自引:0,他引:1  
The Bayesian probability estimation seems to have efficiencies that make it suitable for calculating different parameters of seismicity. Generally this method is able to combine prior information on seismicity while at the same time including statistical uncertainty associated with the estimation of the parameters used to quantify seismicity, in addition to the probabilistic uncertainties associated with the inherent randomness of earthquake occurrence. In this article a time-independent Bayesian approach, which yields the probability that a certain cut-off magnitude will be exceeded at certain time intervals is examined for the region of Alborz, Iran, in order to consider the following consequences for the city of Tehran. This area is located within the Alpine-Himalayan active mountain belt. Many active faults affect the Alborz, most of which are parallel to the range and accommodate the present day oblique convergence across it. Tehran, the capital of Iran, with millions of inhabitants is located near the foothills of the southern Central Alborz. This region has been affected several times by historical and recent earthquakes that confirm the importance of seismic hazard assessment through it. As the first step in this study an updated earthquake catalog is compiled for the Alborz. Then, by assuming a Poisson distribution for the number of earthquakes which occur at a certain time interval, the probabilistic earthquake occurrence is computed by the Bayesian approach. The highest probabilities are found for zone AA and the lowest probabilities for zones KD and CA, meanwhile the overall probability is high.  相似文献   

20.
A simplified tectonic scheme for hazard purposes was recently adopted for northeastern Italy, introducing large generalized seismogenic areas containing systems of complex geometry faults. This scheme considers only major faults with documented seismic activity. In the present analysis, a different tectonic scheme, with linear elements as seismogenic sources, is presented. The assessment of the regional seismic hazard is done with the fault rupture model, its most important advantage being the recognition that the length of fault rupture during an earthquake is an important consideration in probabilistic calculations of seismic hazard. Moreover, some structures with no associated seismicity but with notable neotectonic activity are considered, and their contribution to the results investigated. Important uncertainties such as those in the maximum possible magnitude of future earthquakes, in the location of the fault, in the focal depth, and in the attenuation law are accounted for in the calculations and their influence studied. The results identify a seismic belt running from Lake Garda to Friuli and along the Yugoslav coast and are very similar to those already known for Friuli, with the largest values corresponding to the zone around Gemona. Some slight differences in the shape of the areas of equal acceleration are probably due to the delineation of the seismic sources of the proposed model. For a cautious elaboration, some neotectonic lines without present seismicity were added into the fault model. Their contribution is negligible in the areas of highest acceleration, but increases remarkably in the areas where acceleration is not expected to exceed the medium values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号