首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A geophysical interpretative method is proposed to depth, amplitude coefficient (effective magnetization intensity), and index parameter (effective magnetization inclination) determination of a buried structure from magnetic field data anomaly due to a fault, a thin dike or a sphere-like structure. The method is based on the nonlinearly constrained mathematical modelling and also on the stochastic optimization approaches. The proposed interpretative method was first tested on a theoretical synthetic model with different random errors, where a very close agreement was obtained between the assumed and the evaluated parameters. The validity of this method was also tested on practical field data taken from United States, Australia, India and Brazil, where available magnetic data existed and were previously analyzed by different interpretative methods. The agreement between the results obtained by our developed method and those obtained by the other geophysical methods is good.  相似文献   

2.
A new and simple method based on a nonlinearly mathematical optimization concept has been proposed in this research to interpret magnetic anomalies due to vertical faults and thin dikes. This proposed interpretative method consists of three main steps. The first step is to formulate nonlinearly constrained optimization problems to describe the geophysical problems related to the studied structures. The second step is to suggest an interior penalty function in order to convert these nonlinearly constrained optimization problems into nonlinearly unconstrained optimization ones. The third step is to solve the converted nonlinearly unconstrained optimization problems by using the famous Hooke and Jeevess algorithm in order to estimate the geophysical parameters of the studied structures such as: depth, amplitude coefficient, and index parameter. The Hooke and Jeevess algorithm is purposely chosen for being robust and also its application to magnetic data converges rapidly towards the optimal estimation of parameters. This method was first tested on theoretical models with different random noise, where a very close agreement was obtained between the assumed and evaluated parameters. The validity of this new method was also tested on practical field examples taken from Australia, India, United States, and Brazil, where available magnetic data existed and was previously analyzed by different interpretative methods. The agreement between the results obtained by our developed method and those obtained by the other geophysical methods is good. The advantages of this newly proposed method, compared with the other published interpretative methods, also have been discussed and demonstrated.  相似文献   

3.
A new method is proposed to interpret magnetic anomalies due to a thin dike, a sphere, and a fault like structure, where depth, horizontal location, effective magnetization intensity and effective magnetization inclination of a buried structure are simultaneously obtained. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was firstly tested on a theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noises components. This mathematical simulation shows a very close agreement between the assumed and the estimated parameters. The applicability and validity of this method are thereafter applied to magnetic anomaly data taken from United States, Australia, India, and Brazil. The agreement between the results obtained by the new method and those obtained by other interpretative methods is good and comparable. Moreover, the depth obtained by such a method is found to be in high accordance with that obtained from drilling information.  相似文献   

4.
A new interpretative approach is proposed to interpret residual gravity anomaly profiles in order to determine the depth, the amplitude coefficient and the geometric shape factor of simple spherical and cylindrical buried structures. This new approach is based on both Fair function minimization and on stochastic optimization modeling. The validity of this interpretative approach is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random noises components and a known statistical distribution. Being theoretically proven, this new approach has been applied on three real field gravity anomalies from Sweden, Senegal and the United States. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable.  相似文献   

5.
An interpretative method based on a nonlinearly mathematical optimization concept has been developed in this paper, in order to interpret self-potential anomalies (SP) due to horizontal cylinder, vertical cylinder, sphere and sheet-like structures. This interpretative method comprises three main steps. The first step is to formulate mathematically a nonlinearly constrained minimization problem (NCMP) to describe the geophysical problem related to the studied structure. The second one is to suggest an interior penalty function in order to convert the nonlinearly constrained minimization problem (NCMP) into a nonlinearly unconstrained minimization one (NUMP). The third step is to solve the converted nonlinearly unconstrained minimization problem (NUMP) by the well-known Hooke and Jeeves direct search algorithm in order to estimate the geophysical parameters of the studied structure, i.e., depth, polarization angle, electric dipole moment (magnitude of polarization) and geometric shape factor. The Hooke and Jeeves direct search algorithm is purposely chosen for being robust and its application to SP data allows a rapid convergence towards the optimal estimate of parameters. This interpretative method was first tested on theoretical synthetic models with different random noise, where a very close agreement was obtained between assumed and evaluated parameters.The validity of the proposed interpretative method is also tested on practical field examples taken from Turkey, India and Germany, where available SP data existed and was previously analyzed by different interpretative methods. The agreement between the results obtained by the developed method and those obtained by other published methods is good.Acknowledgment Authors would like to thank Dr. I. Othman Director General of the Atomic Energy Commission of Syria for his interest and continuous encouragement to achieve this work. Special thanks to the reviewers for their constructive suggestions aimed at enhancing the quality of this paper.  相似文献   

6.
A quantitative interpretation method of self-potential field anomalies has been proposed. The method is designed and implemented for the estimation of center depth, electric dipole moment or magnitude of polarization, polarization angle, and geometric shape factor of a buried body from SP field data, related to simple geometric structures such as cylinders, spheres and sheet-like bodies. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was first tested on theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noise components. Such mathematical simulation shows a very close agreement between assumed and estimated model parameters. Being theoretically proven, it has been applied and tested on self-potential field data taken from the United States, Germany, India and Turkey. The agreement between results obtained by the suggested method and those obtained by other previous methods is good and comparable. Moreover, the depth obtained by this method is found to be in high accordance with that obtained from drilling information.  相似文献   

7.
A new best estimate methodology is proposed and oriented towards the determination of parameters related to a magnetic field anomaly produced by a simple geometric-shaped model or body such as a thin dike and horizontal cylinder. This approach is mainly based on solving a system of algebraic linear equations for estimating the three model parameters, e.g., the depth to the top (center) of the body (z), the index parameter or the effective magnetization angle (θ) and the amplitude coefficient or the effective magnetization intensity (k). The utility and validity of this method is demonstrated by analyzing two synthetic magnetic anomalies, using simulated data generated from a known model with different random errors components and a known statistical distribution. This approach was also examined and applied to two real field magnetic anomalies from the United States and Brazil. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable. Moreover, the depth obtained by such an approach is found to be in high accordance with that obtained from drilling information. The advantages of such a proposed method over other existing interpretative techniques are clarified, where it can be generalized to be automatically applicable for interpreting other geological structures described by mathematical formulations.  相似文献   

8.
闽西南地区位于福建武夷山成矿带西南部,自远古宙以来经历了多期次的构造演化.该区地处东南沿海构造-岩浆-成矿带上,为环太平洋大陆边缘多金属成矿带与南岭多金属成矿带复合部位,是我国重要的多金属矿产地.永定大排多金属矿区作为近年来武夷山成矿带新发现的大型多金属矿,区内叠加作用和控矿作用相对复杂,现有的地质地球物理工作程度不足以满足对该区域成矿规律的深入认识,一些基础地质问题亟待解决.因此,本文在深入收集永定大排矿区地质地球物理资料基础上,综合分析区域成矿背景与成矿构造,在重点区域布设综合地球物理勘探工作,包括1:1万高精度磁测、可控源音频大地电磁剖面及反射地震剖面.基于上述工作:1)开展了研究区航磁数据三维磁化率反演与分布特征分析与大地电磁二维电阻率反演与分布特征分析,开展了地震资料真地表深度偏移成像,获得了更加准确的地震剖面成像结果.2)结合推覆体控矿特征,地震剖面和电阻率剖面、航磁反演结果相互验证和约束,勾画了地下构造形态.地表地质剖面延伸和标定了构造形态的地质内涵,获得了从地表到3000 m深度的构造解释结果.解释结果清晰地显示了与推覆相关的构造、控矿层位以及岩体信息,为三位一体的找矿思路提供了地球物理依据.  相似文献   

9.
We have developed a least-squares minimization approach to determine the depth and the amplitude coefficient of a buried structure from residual gravity anomaly profile. This approach is basically based on application of Werner deconvolution method to gravity formulas due to spheres and cylinders, and solving a set of algebraic linear equations to estimate the two-model parameters. The validity of this new method is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random error components and a known statistical distribution. After being theoretically proven, this approach was applied on two real field gravity anomalies from Cuba and Sweden. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable. Moreover, the depth obtained by the proposed approach is found to be in very good agreement with that obtained from drilling information.  相似文献   

10.
A new approach is proposed in order to interpret field self-potential (SP) anomalies related to simple geometric-shaped models such as sphere, horizontal cylinder, and vertical cylinder. This approach is mainly based on solving a set of algebraic linear equations, and directed towards the best estimate of the three model parameters, e.g., electric dipole moment, depth, and polarization angle. Its utility and validity are demonstrated through studying and analyzing synthetic self-potential anomalies obtained by using simulated data generated from a known model and a statistical distribution with different random errors components. Being theoretically tested and proven, this approach has been consequently applied on two real field self-potential anomalies taken from Colorado and Turkey. A comparable and acceptable agreement is obtained between the results derived by the new proposed method and those deduced by other interpretation methods. Moreover, the depth obtained by such an approach is found to be very close to that obtained by drilling information.  相似文献   

11.
12.
The Normalized Full Gradient (NFG) method has widespread applications in the analysis of potential fields, especially the gravity and magnetic fields. This method is used to identify the lateral and horizontal density variations in the crust and lithosphere. In this study, the NFG method was applied to the gravity data of the Cretan Arc and its surroundings. Because of the tectonic features of the eastern Mediterranean, the Cretan Arc and the neighboring areas are seismically very active. Especially the subduction zone and the complicated crustal features have been defined applying many different geophysical methods. In this study, first the NFG method is tested with synthetic prisms (two cubes). After that, the NFG method was applied to the Bouguer gravity data of the Cretan Arc and its subduction zone (Hellenic subduction zone) and Hellenic subduction zone was defined with the foci depth data (USGS) along the south–north direction. Thus, geometry of the focal depth distribution has been created to determine probable media depths and their localizations. According to the NFG results, vertical structural transitions were observed at a depth ranging between 10 and 180?km. Also, these results were compared with the foci depth model and the other results of the related publications. Finally, some considerations in vertical solution with the NFG method have been presented and locations of the different structures at horizontally have been defined with application of the NFG method.  相似文献   

13.
Theoretical and practical aspects of a new method for underground cavity localization are presented. The method is based on shallow temperature measurements. It is shown that such measurements can complement the geophysical methods most commonly used for cavity location. The results from finite-difference numerical calculations indicate possible origins of temperature anomalies–the existence of which is confirmed experimentally, primarily by field measurements. Temperature anomalies up to 1°C have been recorded over underground cavities. A satisfactory agreement between measurements and theory is found.  相似文献   

14.
Gravity data collected by the Geological Survey of Bangladesh are processed and interpreted for imaging of a sediment-basement interface over the northwestern part of Bangladesh. The observed gravity data are processed for discriminating gravitational fields contributed subtly from the shallow basement topographic feature with the twelve nodal piecewise cubic polynomial–based finite–element approach. In spectral analysis, the presence of a widely spread shallow basement feature has been detected and interpretation of gravity data using a two-dimensional gravity inversion technique indicates that its depth ranges from 0.041 km to 0.570 km relative to ground surface. In the northern part of the study area, the inferred basement configuration shows a general depression of the basement in the Takurgaon-Panchagar and Lalmonirhat districts and reaches a maximum depth of about 0.570 km. In the Nilphamari district and its southwestern part, the basement occurs at the most shallow depth due to its upliftment. However, the estimated sediment-basement interface depths are compared with the borehole and other geophysical interpretative information and are found to be consistent.  相似文献   

15.
The storage capacity of reservoirs is gradually reduced due to sediment accumulation that causes changes in the area-storage capacity (ASC) curves.Establishing these curves and predicting their future change is an important issue for planners,designers and operators of dams.Many empirical and semiempirical approaches have been suggested for establishing and predicting the future changes for these curves.In this study four empirical and semi-empirical methods were evaluated and three of them were modified to be used for the prediction of changes in the ASC curves due to sedimentation,based on the existing sedimentation survey data for 11 reservoirs in the USK For evaluation,these approaches were reviewed and used to determine sedimentation depth and establishing the ASC curves for the Mosul dam reservoir (MDR),which is the biggest hydraulic structure on the River Tigris in northern Iraq.MDR started operating in 1986 with a storage capacity of 11.11 km3 and a water surface area 380 km2 at normal operation stage (330 m a.s.l.).The results obtained from these methods were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam.The evaluation results showed three methods had presented more accurate results for estimating water depth or sedimentation depth at dam site with percentage error about 1.06-3.30%.Whilst for establishing ASC curves,one method presented good agreement result with survey data.Furthermore,ASC and sedimentation depths at dam site of MDR for periods 50,75,100 and 125 years were estimated using the modified approaches and the area reduction method.The results of the modified methods provided reasonable agreement when compared with the area reduction method proposed by the U.S.Bureau of Reclamation and the agreement became better with an increase in time period.  相似文献   

16.
矿井物探技术应用现状与发展展望   总被引:3,自引:1,他引:2       下载免费PDF全文
通过回顾近六十年来矿井物探的发展历程,简要分析总结了国内外现有的煤矿矿井物探技术的分类与特点、研究现状与应用成果,详细介绍了主要矿井物探方法技术(矿井地震法、矿井电磁法)的研究应用新进展,提出了目前我国矿井物探技术存在的一些迫切需要解决的问题和今后的发展方向.结果表明:矿井物探是地面勘探技术的重要补充,是矿井地质工作的重要手段,它相对于常规的矿井地质手段而言,具有更准确、更快捷、更方便等特点,已成为我国煤矿现代化安全生产中必备的探测技术手段,具有广阔的发展前景.  相似文献   

17.
An effective stress method is presented for analysis of seismic response and liquefaction of irregular ground including soil–structure interaction, based on an implicit–explicit finite element method. A pore water pressure is computed with iteration from the total stress considering an undrained condition. The simulated pore water pressure is in reasonably good agreement with the experimental data. The proposed method of analysis is compared with other well-known methods for a one-dimensional model, which is in good agreement. The present effective stress method is also applied to liquefaction problems involving a two-dimensional soil–structure model. The structure is modelled by not only a rigid model but also as a multi-degree-of-freedom system with bi-linear springs. The numerical results are considered to be significant from the viewpoint of earthquake engineering.  相似文献   

18.
A statistical technique, based on the concept of a 1D energy density spectrum of the observed gravity field, has been used to compute ensemble average depths to various horizons containing causative sources of random geometric shape, size, density, etc. The plot of the logarithm of the energy of the observed Bouguer anomaly versus the angular frequency can be approximated, over a certain frequency band, by a linear segment whose slope is related to an average ensemble depth around which a random distribution of numerous anomalous sources exists. Suitable matched filters, based on the computed values of intercepts and slopes of several linear segments approximating the spectrum, have been used to deconvolve the gravity effects associated with the causative sources, occurring around their respective mean depths. The individual deconvolved gravity effects thus separated out have been modelled using the sin x/x method by assuming a fluctuating interface between two formations. The applicability of the present method has been assessed using two observed Bouguer anomaly profiles: one from Ujjain to Mahan, and the other from Jhansi to Mandla where Deep Seismic Sounding (DSS) results are available. The proposed geological crustal models along these two profiles exhibit reasonably good agreement with those obtained from DSS results. A geologically plausible model of the crust in a virgin region has been presented along a Bouguer anomaly profile from Jaipur to Raipur. The following main conclusions have been drawn from the present analysis: (1) The depths to the Moho and Archaean basement interfaces fluctuate between 33.2 and 36.8 km and between 4.6 and 7.0 km respectively. (2) The Narmada-Son Lineament (NSL) does not coincide exactly with the Moho upwarp beneath it. However, this offset is greater in the eastern part of the NSL rather than in the western part. (3) The development of the Satpura horst structure is due to a rise in the Moho interface in a compressional regime. (4) The intrabasement feature (depth from 5 to 12 km) represents a hybrid massif possibly formed due to an admixture of sialic and simatic crust under a tensional regime in the Ujjain-Mahan section.  相似文献   

19.
Numerous geologists have studied the structure of the Chaîne des Puys, our knowledge of which has recently been enlarged by geophysical research. Some of the hypotheses concerning its structure at average depth had to be checked, and so in 1975 the National Institute for Astronomy and Geophysics (I.N.A.G.) provided the necessary support for such work.An anomaly of the electrical conductivity was clearly apparent, both from the magnetotelluric method in a wide range of frequencies as well as from more classical methods (electrical sounding) or from newer methods such as differential magnetic sounding.It has been proved that the structure, which is believed to be responsible for this anomaly of conductivity, is quite different from other inferred structures which result from the interpretation of magnetic data only. However, although the coexistence of these different structural elements is not impossible, heat-flow measurements and geochemical studies do not support the assumption of an active magma chamber (a few kilometres deep).  相似文献   

20.
Based on the results of multiple geophysical research methods,the lithosphere thicknessisolines of the northeastern margin of Sino-Korean platform and its neighboring area havebeen compiled and the geotectonic significance and the geodynamic characteristics of depthdistribution of asthenosphere roof have been also discussed.The authors proposed that closerrelation exists between the depth of asthenosphere roof and the tectonic activity as well as themodern faulting and seismic activity from Meso-Cenozoic Era till now.The upper mantleasthenosphere is generally uplift in Hailar basin,Bohal Bay-Xia Liaohe basin andSonghuajiang-Liaohe basin.Meanwhile,there exists modern seismic activity and groundsubsidence in this area.It is result from the uplift of upper mantle asthenosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号