首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
The dynamical interaction of a binary or planetary system and a third body moving on a parabolic orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in binary star disruption and exchange, in extrasolar planetary system disruption, exchange and capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. This makes exchange or disruption of the component masses more likely as does increasing the eccentricity of the binary.
The stability criteria are applied to determine possible disruption and capture distances for currently known extrasolar planetary systems.  相似文献   

2.
The dynamical stability of a bound triple system composed of a small binary or minor planetary system moving on a orbit inclined to a central third body is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of extrasolar planetary systems and minor planetary systems against disruption, component exchange or capture. The Hill stability criterion is applied to triple star systems and extrasolar planetary systems, the Sun-Earth-Moon system and Kuiper Belt binary systems to determine the critical distances for stable orbits. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects.These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the binary orbit relative to the third body substantially decreases stability regions as the eccentricity reaches higher values. The Kuiper Belt binaries were found to be stable if they move on circular orbits. Taking into account the eccentricity, it is less clear that all the systems are stable.  相似文献   

3.
The dynamical stability of a triple system composed of a binary or planetary system and a bound third body moving on a orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of planetary systems against disruption, component exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects. These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the third body initially increases the stability of the system then decreases stability as the eccentricity reaches higher values.The Hill stability criterion is applied to extrasolar planetary systems to determine the critical distances at which planets of the same mass as the observed extrasolar planet moving on a circular orbit could remain on a stable orbit. It was found that these distances were sufficiently short suggesting that the presence of further as yet unobserved stable extrasolar planets in observed systems was very likely.  相似文献   

4.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

5.
The dynamical interactio of a binary system and a third body not moving on a closed orbit arises in a large number of physical situations. The C2H condition for determining Hill stability of coplanar bound three-body systems is extended to cover situations where the outer body moves on a parabolic or hyperbolic orbit. Regions where such a body is stable against exchange or collision with other components of the system are determined for a number of important cases where closed solutions are possible.  相似文献   

6.
The notion of Hill stability is extended from the circular restricted 3-body problem to the general three-body problem; it is even extended to systems of positive energy and the Hill's curves with their corresponding forbidden zones are generalized.Hill stable systems of negative energy present a hierarchy: they have a close binary that can be neither approached nor disrupted by the third body. This phenomenon becomes particularly clear with the distance curves presentation.The three limiting cases, restricted, planetary and lunar are analysed as well as some real stellar cases.  相似文献   

7.
We discuss Hill stability in the general three-body problem. The Hill curves in the general problem are the same as in the planar problem. We show that the bifurcation points correspond to the five equilibrium solutions, and derive the criterion for stability in the general case. Application of this criterion to 19 natural satellites of the Solar system leads to the result that, apart from Neptune 1, all the other 18 satellites are unstable in the sense of Hill. The dominant factor in producing this result is the finite eccentricity of the planetary orbits around the Sun.  相似文献   

8.
The Hill stability of the low mass binary system in the presence of a massive third body moving on a wider inclined orbit is investigated analytically. It is found that, in the case of the third body being on a nearly circular orbit, the region of Hill stability expands as the binary/third body mass ratio increases and the inclination (i) decreases. This i-dependence decreases very quickly with increasing eccentricity (e 2) of the third body relative to the binary barycentre. In fact, if e 2 is not extremely small, the Hill stable region can be approximately expressed in a closed form by setting i = 90°, and it contracts with increasing e 2 as ${e_2^2}$ for sufficiently low mass binary. Our analytic results are then applied to the observed triple star systems and the Kuiper belt binaries.  相似文献   

9.
Several families of the planar general three-body problem for fixed values of the three masses are found, in a rotating frame of reference, where the mass of two of the bodies is small compared to the mass of the third body. These families were obtained by the continuation of a degenerate family of periodic orbits of three bodies where two of the bodies have zero masses and describe circular orbits around a third body with finite mass, in the same direction.The above families represent planetary systems with the body with the large mass representing the Sun and the two small bodies representing two planets or comets. One section of a family is shown to represent the Jupiter family of comets and also a model for the Sun-Jupiter-Saturn system is found.The stability analysis revealed that stability exists for small masses and small eccentricities of the two planets. Planetary systems with relatively large masses and eccentricities are proved to be unstable. In particular, the Jupiter family of comets, for small masses of the two small bodies, and the Sun-Jupiter-Saturn system are proved to be stable. Also, it was shown that resonances are not necessarily associated with instabilities.  相似文献   

10.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Mark J. Reid 《Icarus》1975,24(1):136-138
The stability of a satellite-orbiting object under the disturbing influence of the parent planet can be assessed by comparison with analogous three-body systems. The changes in the eccentricity and semimajor axis of a satellite-orbiting object (disturbed by the planet) and a planetary satellite (disturbed by the sun) scale equally if the dimensions of the systems are scaled by the sphere of influence of the orbited body. Thus, the apparent gravitational stability of planetary satellites supports theories of the gravitational stability of satellite-orbiting objects.  相似文献   

12.
The angle between planetary spin and the normal direction of an orbital plane is supposed to reveal a range of information about the associated planetary formation and evolution. Since the orbit's eccentricity and inclination oscillate periodically in a hierarchical triple body and tidal friction makes the spin parallel to the normal orientation of the orbital plane with a short timescale in an isolated binary system, we focus on the comprehensive effect of third body perturbation and tidal mechanism on the angle. Firstly, we extend the Hut tidal model(1981) to the general spatial case, adopting the equilibrium tide and weak friction hypothesis with constant delay time, which is suitable for arbitrary eccentricity and any angle ? between the planetary spin and normal orientation of the orbital plane. Furthermore, under the constraint of angular momentum conservation, the equations of orbital and ratational motion are given. Secondly, considering the coupled effects of tidal dissipation and third body perturbation, and adopting the quadrupole approximation as the third body perturbation effect, a comprehensive model is established by this work. Finally, we find that the ultimate evolution depends on the timescales of the third body and tidal friction. When the timescale of the third body is much shorter than that of tidal friction, the angle ? will oscillate for a long time,even over the whole evolution; when the timescale of the third body is observably larger than that of the tidal friction, the system may enter stable states, with the angle ? decaying to zero ultimately, and some cases may have a stable inclination beyond the critical value of Lidov-Kozai resonance. In addition, these dynamical evolutions depend on the initial values of the orbital elements and may aid in understanding the characteristics of the orbits of exoplanets.  相似文献   

13.
The stability limit of coplanar hierarchical triple systems is numerically studied. Systems we investigated consist of two equal mass bodies initially on a circular orbit and third body with various masses, which at the maximum are equal to the mass of the binary. In order to estimate the stability limit, we use an empirically-found fact that the system is quasi-periodic if the initial eccentricity of the outer binary is less than some critical value, otherwise the third body eventually escapes. We make an analytical expression for the stability limit in terms of the ratio of the orbital radii and find that the expression improves the previous criteria. The resultant expression also suggests that the ratio of the orbital radii rapidly approaches to a certain value (e.g. $\sim $ 2, in an initially circular outer binary) as the mass of the third-body tends to zero.  相似文献   

14.
Hill stability of a triple system with an inner binary of large mass ratio   总被引:1,自引:0,他引:1  
We determine the maximum dimensionless pericentre distance a third body can have to the barycentre of an extreme mass ratio binary, beyond which no exchange or ejection of any of the binary components can occur. We calculate this maximum distance, q '/ a , where q ' is the pericentre of the third mass to the binary barycentre and a is the semimajor axis of the binary, as a function of the critical value of   L 2  E   of the system, where L is the magnitude of the angular momentum vector and E is the total energy of the system. The critical value is obtained by calculating   L 2  E   for the central configuration of the system at the collinear Lagrangian points. In our case we can make approximations for the system when one of the masses is small. We compare the calculated values of the pericentre distance with numerical scattering experiments as a function of the eccentricity of the inner orbit, e , the mutual inclination i and the eccentricity of the outer orbit, e '. These show that the maximum observed value of   q '/ a   is indeed the critical q '/ a , as expected. However, when   e '→1  , the maximum observed value of q '/ a is equal to the critical value calculated when   e '=0  , which is contrary to the theory, which predicts exchange distances several orders of magnitude larger for nearly parabolic orbits. This does not occur because changes in the binding energy of the binary are exponentially small for distant, nearly parabolic encounters.  相似文献   

15.
An analytical treatment of the evolutionary dynamics of a three-body planetary system subject to dynamical friction with an interplanetary medium is presented. The analysis presented here is in connection with the results of numerical integrations of such systems recently published by Haghighipour. Using the method of partial averaging near a resonance, the dynamics of a restricted, circular, planar three-body system, with the inner body more massive, is studied and the time variation of quantities such as the orbital angular momentum and the eccentricity of the outer planet, which were previously obtained from numerical integrations, is analytically verified.  相似文献   

16.
A method is developed to study the stability of periodic motions of the three-body problem in a rotating frame of reference, based on the notion of surface of section. The method is linear and involves the computation of a 4×4 variational matrix by integrating numerically the differential equations for time intervals of the order of a period. Several properties of this matrix are proved and also it is shown that for a symmetric periodic motion it can be computed by integrating for half the period only.This linear stability analysis is used to study the stability of a family of periodic motions of three bodies with equal masses, in a rotating frame of reference. This family represents motion such that two bodies revolve around each other and the third body revolves around this binary system in the same direction to a distance which varies along the members of the family. It was found that a large part of the family, corresponding to the case where the distance of the third body from the binary system is larger than the dimensions of the binary system, represents stable motion. The nonlinear effects to the linear stability analysis are studied by computing the intersections of several perturbed orbits with the surface of sectiony 3=0. In some cases more than 1000 intersections are computed. These numerical results indicate that linear stability implies stability to all orders, and this is true for quite large perturbations.  相似文献   

17.
The radial velocity of the binary star β CrB was reinvestigated to look for the hypothetical third body, suggested by NEUBAUERS results. Under the assumption that a systematic difference of 1.4 km/sec between NEUBAUERS results from 1931–43 and ours from 1971–83 is of instrumental origin, the radial velocities of both epochs can be well represented with the same orbital elements: thus the probability for the existence of a third component in the system is reduced. The eccentricity and the angle of periastron passage of the visual orbit, derived from published speckle interferometric measurements, agree very well with the corresponding elements of the spectroscopic orbit. For the masses of the components those of giant resp. subgiant stars of type A8 and F5 are found. The geometry of the binary β CrB with a magnetic star as the primary component is demonstrated.  相似文献   

18.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

19.
A theoretical model, based on particular type of the restricted three-body problem, is here presented in order to demonstrate the existence of a possible planetary motion near the center of mass in a binary star system. The superposition principle is used, with the introduction of two fictitious negative masses in order to simulate the real two primary bodies system.  相似文献   

20.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号