首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norton  A.A.  Ulrich  R.K. 《Solar physics》2000,192(1-2):403-413
A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2 spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5 square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.  相似文献   

2.
We have observed about 15 active regions on the Sun, with the Advanced Stokes Polarimeter and Dick Dunn Telescope at NSO/SP to map the Stokes parameters in the photospheric Fe 6302.5 Å and chromospheric Mg I 5173 Å lines, during 1999‐2002. The observations are corrected for dark current, gain, instrumental polarization and cross‐talk using ASP pipeline. The wavelength calibration is carried out using the O2 telluric line 6302 Å which is also present in the observations. The photospheric and chromospheric longitudinal magnetograms are made from the Stokes V profiles, which were intercalibrated with the Kitt Peak magnetograms. The plasma motions are inferred from the line bisector measurements at different positions of the spectral line. In this paper we present the height dependence of Doppler velocity scatter plots of a sunspot in the photospheric Fe I 6302 Å line.  相似文献   

3.
On 13 May 2000 parts of a penumbra were observed in an active region NOAA 8990 with the La Palma Stokes Polarimeter attached to the Swedish Vacuum Solar Telescope. The stratification over the solar atmosphere of different physical parameters is retrieved from these data by using the Stokes inversion based on response functions. The results confirm the previous findings of the penumbral structure. In general, the magnetic field becomes weaker and more horizontal with increasing distance from the umbra and the line-of-sight velocities are increasing towards the outer boundary of the penumbra. The results also suggest the existence of the unresolved fine structure of the penumbra. The stratifications of the temperature and of the magnetic field strength indicate the presence of rising flux tubes, which were predicted theoretically by Schlichenmaier, Jahn and Schmidt (1998, Astron. Astrophys. 337, 897).  相似文献   

4.
Performance characteristics of the advanced stokes polarimeter   总被引:1,自引:0,他引:1  
B. W. Lites 《Solar physics》1996,163(2):223-230
Recently Zirin (1995) published a response to our paper of last year (Lites, Martínez Pillet, and Skumanich, 1994), in which we quantified some limitations of vector magnetometry by the use of a generic filter magnetograph. Zirin's Letter makes specific reference to the Advanced Stokes Polarimeter (ASP), and in so doing he makes incorrect statements regarding the performance characteristics of the ASP. The intent of this paper is to rectify those erroneous representations and to clarify several other issues raised by Zirin which might give the reader of his Letter an incorrect picture of the ASP.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
We make a quantitative comparison between spectral vs filter measurement and analysis techniques for extraction of solar vector magnetic fields from polarimetric data using as a basis the accurately calibrated, high angular resolution Stokes profile data from the Advanced Stokes Polarimeter. It is shown that filter-based measurements deliver qualitative images of the field alignment for sunspots that are visually similar to images derived from the more detailed analysis of the Stokes profiles. However, quantitative comparison with least-squares fits to the full Stokes profiles show that both the strength of the field predicted by the filter-based analysis and its orientation contain substantial errors. These errors are largest for plage regions outside of sunspots, where the field strengths are inferred to be only a fraction of their true values, and errors in the orientation of 40–50° are common. Within sunspots, errors of 20° are commonplace. The greatest source of these errors is the inability of the filter-based measurements to account for the small fill fraction of magnetic fields or, equivalently, scattered light in the instrument, which reduce the degree of polarization. The uncertainties of the full profile fitting methods are also discussed, along with the errors introduced by coarser wavelength sampling of the observed Stokes profiles. The least-squares fitting procedure operates best when the profiles are sampled at least as frequently as one Doppler width of the line.On leave from the Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

7.
Many astronomical objects emit polarised light, which can give information both about their source mechanisms, and about (scattering) geometry in their source regions. To date (mostly) only the linearly polarised components of the emission have been observed in stellar sources. Observations have been constrained because of instrumental considerations to periods of excellent observing conditions, and to steady, slowly or periodically-varying sources. This leaves a whole range of interesting objects beyond the range of observation at present. The Galway Astronomical Stokes Polarimeter (GASP) has been developed to enable us to make observations on these very sources. GASP measures the four components of the Stokes Vector simultaneously over a broad wavelength range 400–800 nm., with a time resolution of order microseconds given suitable detectors and a bright source - this is possible because the optical design contains no moving or modulating components. The initial design of GASP is presented and we include some preliminary observational results demonstrating that components of the Stokes vector can be measured to $<1$ % in conditions of poor atmospheric stability. Issues of efficiency and stability are addressed. An analysis of suitable astronomical targets, demanding the unique properties of GASP, is also presented.  相似文献   

8.
Gosain  Sanjay  Prasad Choudhary  Debi 《Solar physics》2003,217(1):119-132
Simultaneous observations of Stokes profiles in photospheric Fei (630.15 nm and 630.25 nm) and chromospheric Mgi b 1 and b 2 (518.4 nm and 517.3 nm) lines over a sunspot are presented. Observations were carried out using the Advanced Stokes Polarimeter of HAO/NSO, VTT, SacPeak, U.S.A. The Stokes-V amplitude asymmetries for these lines are analyzed. The values of amplitude asymmetry in Mgb lines are negative in disk-center-side penumbra while they are positive in limb-side penumbra. This trend is similar in nature to photospheric Fei line observations. Further, the spatial distribution of Stokes-V asymmetry is analyzed using Net Circular Polarization (NCP) maps. The chromospheric and photospheric NCP maps are different in many aspects. These observations with longitudinal magnetic field, estimated using weak field approximation, are discussed in this paper.  相似文献   

9.
Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe I line at 15648 Å The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30°. Chromospheric Hα and He II 304 Å filtergrams revealed three superpenumbral fibrils on the limb‐side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral counterpart of the light bridge. An intense, elongated brightening was observed along this fibril that was co‐spatial with the intersecting penumbral filaments in the photosphere. Our results suggest that the disruption in the sunspot magnetic field at the location of the light bridge could be the source of reconnection that led to the intense chromospheric brightening and facilitated the supply of cool material in maintaining the overlying superpenumbral fibrils. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We use 270 pairs of vector magnetograms observed by Haleakala Stokes Polarimeter (HSP) and Solar Magnetic Field Telescope (SMFT) of Huairou Solar Observing Station from 1997 to 2000 to compare current helicity derived by these two instruments. We apply the same approach to both data sets to resolve 180 azimuth ambiguity and compute α coefficient of linear force-free field. After careful consideration of various aspects of both data sets, we find that in ≈80% of cases SMFT and HSP data result in the same sign of α, and the Pearson linear correlation coefficient between two data sets is rp = 0.64. Operated by the Association of Universities for Research in Astronomy (AURA, Inc) under cooperative agreement with the National Science Foundation (NSF).  相似文献   

11.
We compare completely independent vector magnetic field measurements from two very different polarimetric instruments. The Marshall Space Flight Center's imaging vector magnetograph is based on a birefringent filter, routinely measuring all four Stokes parameters integrated over the filter bandpass (1/8 Å) which is tunable across the Fei 5250 line in 10 mÅ steps. The Haleakala Stokes Polarimeter of the Mees Solar Observatory (MSO) is based on a spectrometer, routinely measuring all four Stokes parameters of the Fei 6302.5 line simultaneously and then spatially scanning to build up a vector magnetogram. We obtained active region magnetic field data with both the Marshall Space Flight Center (MSFC) and MSO systems on five days during June 1985. After interpolating the MSFC vector fields onto the more coarse spatial grid of MSO we make a point-by-point comparison of the two vector fields for data obtained on two of these days (June 8 and 9). From this comparison we conclude: (1) the spatially-averaged line-of-sight components agree quite well; (2) although the MSO spatial grid is coarser, the quality of the MSO image is better than that of the MSFC data because of better seeing conditions; (3) the agreement between the transverse magnitudes is affected by the poor image quality of the MSFC data; and (4) if the effects of Faraday rotation caused by including line-center linear polarization in the method of analysis are taken into account, the azimuths show good agreement within the scatter in the data caused by the averaging process.National Research Council Resident Research Associate.  相似文献   

12.
Berger  T.E.  Lites  B.W. 《Solar physics》2003,213(2):213-229
Cotemporal Nii 676.8 nm full-disk magnetograms from the Michelson Doppler Interferometer (MDI) instrument on SOHO and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. MDI produces flux density estimates based on a polarized line center-of-gravity algorithm using moderate spectral resolution filtergrams with approximately 4 arc sec angular resolution. The magnetograms are formed by an on-board image processor and sent to the ground where they are calibrated using an empirical model to produce flux density maps. The ASP uses high spectral resolution Stokes polarimetric observations to produce very high precision vector magnetic field maps at angular resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create a reference ASP `longitudinal magnetic flux density map' with which to calibrate the MDI full-disk magnetograms. The magnetograms from each instrument are scaled to a common reference frame and co-aligned with an accuracy of about 1.6 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate MDI predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine an MDI magnetogram linear calibration relative to reference ASP flux density values. We find that the current Level-1.5 MDI full-disk calibration gives flux density values lower on average by a factor of 0.64±0.013 compared to the ASP reference in active region plage. In sunspot regions (penumbra and umbra) the factor is 0.69±0.007.  相似文献   

13.
Observations of a round, unipolar sunspot in the Zeeman triplet Fe i 6302.5 with the High Altitude Observatory Stokes Polarimeter are used to derive the vector magnetic field in the spot. The behavior of the magnitude, inclination, and azimuth of the field vector B across the spot is discussed. A linear relation is found between the continuum intensity I c and the field magnitude B. Time series obtained in the umbra show significant power in the magnitude of the field at a period of t 180 s but the other components of the field vector do not display this behavior.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Berger  T.E.  Lites  B.W. 《Solar physics》2002,208(2):181-210
Cotemporal Fei 630.2 nm magnetograms from the Solar Optical Universal Polarimeter (SOUP) filter and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. The SOUP instrument produces Stokes V/I `filter magnetograms' with wide field of view and spatial resolution below 0.5 arc sec in good seeing, but low spectral resolution. In contrast, the ASP uses high spectral resolution to produce very high-precision vector magnetic field maps at spatial resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create an ASP `longitudinal magnetic flux-density map' with which to calibrate the less precise SOUP magnetograms. The magnetograms from each instrument are co-aligned with an accuracy of about 1 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate SOUP predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine the SOUP magnetogram linear calibration constant relative to ASP flux-density values. We compare three distinct methods of scaling the ASP and SOUP data to a common reference frame in order to explore filling factor effects. The recommended SOUP calibration constant is 17000 ± 550 Mx cm–2 per polarization percent in plage regions. We find a distinct polarity asymmetry in SOUP response relative to the ASP, apparently due to a spatial resolution effect in the ASP data: the smaller, less numerous, minority polarity structures in the plage region are preferentially blended with the majority polarity structures. The blending occurs to a lesser degree in the high-resolution SOUP magnetogram thus leading to an apparent increase in SOUP sensitivity to the minority polarity structures relative to the ASP. One implication of this effect is that in mixed polarity regions on the Sun, lower spatial resolution magnetograms may significantly underestimate minority polarity flux levels, thus leading to apparent flux imbalances in the data. *Visiting Astronomer, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
《New Astronomy Reviews》1999,43(2-4):263-269
We describe a Two Channel Correlation Polarimeter built by the Milan Radio Group for searching polarization of the Cosmic Microwave Background. The system sensitivity is sufficient to detect linearly polarized signals or set firm upper limits at levels of few μK. The program of observations and some preliminary results are presented.  相似文献   

16.
The large-scale density structure of the white-light solar corona has been compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere in order to examine whether any consistent relationship exists between the two. Data from the High Altitude Observatory's Mk-III K-coronameter have been used to describe the coronal density structure, and observations from several sources, beginning with observations from the University of Hawaii Stokes Polarimeter have been used to establish the magnetic field distribution. Stanford magnetograms as well as the neutral line inferred from potential field models have also been examined. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements, however, are associated with neutral lines through active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. We find a significant number of long-lived neutral lines, including filaments seen in H, for which there are not coronal enhancements.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Harold Zirin 《Solar physics》1995,159(1):203-206
Liteset al. (1994) (hereafter LMS) have recently published a comparison of the response of their magnetograph (the Advanced Stokes Polarimeter (ASP)) to that they expect from filter-based magnetographs (FM). Not surprisingly, they conclude the ASP is better. They claim that only their instrument is quantitative, and others are not, and that the transverse field strength and azimuth measured by filter magnetographs may be in error by up to 50%. While the calculation is formally correct it ignores the high sensitivity attained by real FM's accumulating thousands of difference frames. Further, FM's have been cross-compared and tested empirically, without any such errors appearing. We point out that the two instruments have different roles, but the functional use of the FM is far superior to the ASP for solar research. The ASP may give accurate results for unresolved unipolar fields; it gives totally erroneous results when the field rapidly changes direction within its resolution element, as occurs in delta spots.  相似文献   

18.
Magnetic map of a sunspot obtained with the Tenerife In‐frared Polarimeter at the German Vacuum Tower Telescope (see R.E. Louis et al., this issue, p. 161). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We address the magnetic field structure of solar pores. The data were obtained at the Gregory Coudè telescope at Izaña using the AT1 CCD camera system to observe pores with three spectral lines: one magnetically sensitive line, recording all 4 Stokes profiles, and two g = 0 lines where only the intensity profiles were measured. The data reduction included the standard procedure (removing dark current and flatfielding) as well as destretching of the polarimetric spectra and removing the non-magnetic straylight by means of a 2-d deconvolution of the observed intensity variation using a Lucy-Richardson restoration algorithm. In the following analysis we first determined the temperature- and pressure stratification of the pore using the g = 0 lines and then applied an inversion of the Stokes profiles to get the parameters of the magnetic field. Across the pore we find a strong variation of the resulting field strength as well as of the inclination and the azimuth, consistent with the assumption of a canopy forming in the higher atmosphere.  相似文献   

20.
We describe briefly the Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission and discuss data pertaining to the emissions observed in lines originating in the transition-region plasma, particularly during impulsive flares. The data pertain to lines from the following ions: SiII, CIV, OIV, SiIV, OV, and FeXXI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号