首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
孙涛  王英波  孙洪涛 《海岸工程》2022,41(3):250-257
底部透空不透水建筑物是近海工程中的一种新型结构,与传统水工建筑物相比,其能灵活适应基床不发生变形、阻止波浪进入后方造成破坏。本文通过构建物理模型,在波浪水槽中进行试验,测试了底部透空不透水直立建筑物不规则波作用,得到了不同水深、相同波浪要素时,该型直立建筑物迎浪面和底面的水平总力最大时各测点正向波压力和负向波压力数据。对比分析了不同水深下底部透空不透水直立建筑物的水平总力及垂直力,总结了波峰和波谷作用下波浪力沿建筑物表面的分布规律,可为海岸工程结构设计提供依据。  相似文献   

2.
为研究不同的数值模拟方式对直立堤波压力的模拟情况,以及直立堤上波压力随入射波周期变化的情况,本文基于XFLOW与FLOW-3D分别建立数值水槽,模拟了二阶斯托克斯波与直立堤相互作用的情况,并对结果进行了分析。研究表明:模拟所得结果均与物理试验结果吻合较好,但FLOW-3D模拟结果的误差更小;此外,在入射波波高不变的情况下,随着入射波周期的增加,作用于防波堤迎浪面各测点的波压力整体趋势基本相同,波峰作用时,波压力逐渐增大,且增幅均匀减小;在极端高水位时波浪周期T达到120%,或者设计高水位时波浪周期T达到130%的情况下,波压力基本稳定;波谷作用时,波压力先减小,当周期T达到110%后,波压力基本稳定。  相似文献   

3.
根据波浪图像的纹理特征,提出了一种基于数学形态学图像分割的波向检测方法,该方法首先利用顶帽变换和底帽变换,得到增强的波浪纹理图像,然后对图像波谷进行应用标记的分水岭分割,最后利用波谷形态方向提取出波浪方向,实验结果证明该算法能够有效地实现波向检测。  相似文献   

4.
为实现同时测量海水的盐度温度,研制了2×2四端口微光纤耦合器型传感器。耦合器锥形过渡区激发的偶超模与奇超模在S均匀腰区传输时将逐渐累积相位差,产生干涉光谱。研究表明:波谷位置分别随着海水盐度、温度的改变而移动,得到了2个波谷的盐度灵敏度为1 418.00和1 600.00 pm/‰,温度灵敏度为-745.00和-778.00 pm/℃,建立了灵敏度矩阵。通过追踪这2个波谷位置,结合灵敏度矩阵,可实现对任意待测样品盐度、温度的同时测量,与盐度计、热电偶温度计实测数据的对比表明,此传感器具有很好的准确度。该盐度、温度双参数测量传感装置具有小尺寸、易制作和高灵敏度等优势,本研究为海洋环境及海洋动力现象的研究提供了一种新型的光学探测方法。  相似文献   

5.
为了提高基于侧扫声纳图像提取海底沙波谷线这种类别不均衡线状地物的精度,提出了一种深度学习与数学形态学相结合的方法。该方法采用Dice损失函数和添加批标准化(batch normalization, BN),对U型卷积神经网络模型(U-Net)进行改进;结合数学形态学中的闭运算和骨架法,对沙波谷线轮廓进行修复并提取线性特征;进一步将改进的U-Net模型与支持向量机(support vector machine, SVM)、随机森林(random forest, RF)、面向对象分类以及U-Net模型进行精度对比验证。结果表明:改进的U-Net模型能够解决类别不均衡的问题,实现沙波谷线的高精度提取,该方法对海底沙波的研究具有重要的科学与工程应用价值。  相似文献   

6.
通过正向与斜向波浪对半圆型防波堤(不开孔出水堤)的实验研究,给出了其水力特性及单位堤长所受的无因次水平波浪力、竖向波浪力和波浪浮托力随各主要影响因素的变化规律,特别指出了斜向波浪力可大于正向波浪力及水平波浪力中波谷作用大于波峰作用发生的条件。  相似文献   

7.
内孤立波波致流场数值模拟研究   总被引:1,自引:1,他引:0  
基于KdV、mKdV理论,利用Fluent计算软件,采用"平板拍击"造波方法,进行内孤立波数值模拟,并与物理实验结果进行对比验证。利用数值模拟结果,分析内孤立波波致流场变化,结果表明:上下层流体中波致水平流速方向相反,均呈现先增加后减小的变化趋势,且波谷经过时刻流速最大;在波谷经过断面处,波致水平流速在上层流体中沿垂向分布无明显变化,在波面以下的下层流体中有衰减趋势,但衰减很小;两层流体界面与波谷之间存在过渡水深范围,水平流速在该水深范围内沿垂向衰减明显,且随内孤立波振幅的增大,过渡水深范围有所增大。  相似文献   

8.
通过自由落体的入水方式,分别在静水和规则波中开展了两种不同横剖面的曲面楔形体入水砰击问题试验研究。使用高速摄像系统记录楔形体入水过程流场演变和运动特性,采用加速度传感器和压力传感器进行数据的动态采集。试验结果表明,在静水中入水时,外凸剖面楔形体入水砰击后模型两侧的射流飞溅比反曲剖面更剧烈,而在楔形体前端的水面以下部分形成的气腔更小;在规则波中入水时,对于相同模型,在波峰和上跨零点相位下模型入水砰击后两侧的射流飞溅比在波谷相位更剧烈。相同工况时,反曲剖面模型所受砰击的加速度峰值和压力峰值更小;在相同的入水速度下,对于相同模型,波浪载荷和砰击载荷的共同作用会使模型所受砰击压力显著增大。  相似文献   

9.
南沙海区沉积物剩余磁化强度与古气候旋回   总被引:3,自引:0,他引:3  
根据南沙海区NS87-11柱样沉积物Mr(剩余磁化强度)的变化曲线与δ~(18)O(氧同位素)变化曲线平行对比,发现Mr的波峰、波谷与δ~(18)O揭示的古气候变化的波峰、波谷相对应。表明南沙海区沉积物的Mr记录了暖→冷→暖古气候旋回变化的特征,反映了全球性气候变化的波动周期。微体古生物分析结果可以证实这一特征。这预示海洋沉积物的Mr不仅可作为探索古气候变化的重要标志,而且可能成为第四纪磁性地层对比、划分的依据。  相似文献   

10.
波浪作用下海床的稳定性直接影响着海洋构筑物的安全。目前在波土相互作用的研究中,虽然较多地涉及到对海床液化或剪切破坏的分析,但缺乏不同海床计算厚度和饱和度等条件下二者破坏特征的对比研究。本文基于波浪作用下海床应力的解析解,对砂土海床的剪切破坏和瞬态液化破坏特征进行了详细研究和对比。结果分析表明,对于波浪作用下不同饱和度的砂土海床,其剪切破坏深度随海床计算厚度的增加表现为3种变化模式,而其液化深度随海床计算厚度的增加则只表现为1种变化模式。相比非饱和砂土海床,饱和砂土海床计算厚度较小时才可能发生液化,且其液化深度最小,但相同条件下对应的剪切破坏深度却最大。波浪作用下砂土海床存在一个最不稳定厚度,其数值约为(0.2~0.3)倍波长,此时海床最易发生破坏,且破坏深度较大。波浪作用下砂土海床的剪切破坏在波峰和波谷处均可能发生,而瞬态液化只发生在波谷位置,且其液化深度位于剪切破坏深度范围内。  相似文献   

11.
波浪作用下海床土体的液化现象严重影响着海洋工程结构物的安全性和稳定性。以往的学者针对海床土体中残余孔压的累积发展规律已有较多研究,但是对于海洋结构物周围土体中的瞬时孔压响应分析较少。本文以黄河三角洲粉土海床为研究对象,通过ABAQUS子程序同时考虑了单桩所受水平波浪荷载、土体所受竖向波浪荷载,从而研究了极端海况下海上风电大直径单桩基础周围土体的瞬时孔压响应。通过数值模拟结果得到如下结论:相比于仅受到波浪的竖向作用时,单桩的振动效果使得桩周土体在一定深度范围内出现的孔隙水压力,超过了海床表面的孔压最大值;同时,单桩四周孔压分布并不对称,其中桩前土体负孔隙水压力峰值小于桩后;波谷作用时,计算得到的桩前土体瞬时液化深度大于桩后土体,且随着距离单桩距离的增加,最大液化深度在逐渐减小。  相似文献   

12.
为探究南黄海和东海不同海域春季中华哲水蚤(Calanus sinicus)分布主要受何种环境因子影响及对各环境因子的响应差异,利用2020年春季南黄海海州湾至长江口以北海域和东海长江口海域、三门湾邻近海域、福建中部近岸海域调查数据,基于广义可加非线性模型(GAMs)分析了中华哲水蚤与环境因子的关系。结果表明:海州湾至长江口以北海域中华哲水蚤主要受温度、溶解氧、化学需氧量、Chl a、pH和氨氮的影响。其密度随着温度的增加呈一个波谷曲线变动,温度在14℃时密度最低;随着溶解氧的增加其密度呈一个波谷曲线变动,溶解氧含量在10 mg/L时中华哲水蚤密度最低;随化学需氧量增加其密度波动变化;随着Chl a浓度的增加其密度先下降再呈波动上升;随着pH的增加中华哲水蚤密度逐渐降低;随着氨氮浓度的增加中华哲水蚤密度逐渐增加。长江口海域中华哲水蚤主要受盐度、水深、化学需氧量和活性磷酸盐影响,随盐度和水深的增加其密度逐渐增加;随化学需氧量和活性磷酸盐浓度增加其密度逐渐降低。三门湾邻近海域中华哲水蚤主要受盐度、pH和透明度影响,随盐度的增加其密度逐渐增加;随pH的增加其密度逐渐降低;随透明度的增加其密度先...  相似文献   

13.
武军林  魏岗  杜辉  徐峻楠 《海洋科学》2017,41(9):114-122
为进一步探究海洋内孤立波诱导流场对海洋工程结构物以及潜航器的影响,本文采用重力塌陷方法和粒子图像测速(Particle Image velocimetry,PIV)技术在大型分层流水槽中进行内孤立波造波以及内部流速场测量,定量分析了下凹型内孤立波诱导流场结构及其影响因素。研究表明:在密度分层流体中,PIV技术可实现对大幅面内孤立波诱导流场的精细测量以及波动结构特征的准确描述;水平流速在上下层方向相反且在跃层处最小,其剪切作用在波谷附近最强;垂向流动在波前和波后分别为上升和下沉流,两者流速值在距离波谷1/4~1/2波长位置达到最大;在相同内孤立波振幅条件下,上下层流体密度差越大、厚度比越小,则波致流场越强;随着振幅增大,流场结构与Kd V、e Kd V和MCC理论模型对应波幅适用范围的描述相吻合。  相似文献   

14.
为了降低空化造成的水动力性能损失,基于仿生学原理,参考座头鲸鳍肢剖面形状,将前缘波浪构型引入到水翼设计中,研究波状前缘水翼的非定常空化特性,并探究前缘参数改变对空化控制的效果和规律。选用NACA634-021水翼为基准模型,进行前缘参数化重构,设计出3种不同的波状水翼进行对比研究。采用大涡模拟(LES)方法对空化流场进行精细化数值模拟,针对基准水翼和不同波幅与波长参数下的波状水翼开展了空化周期、升阻力系数、压力脉动以及流向涡结构的对比分析。结果发现,波状水翼在抑制空化和降低压力脉动方面都取得了显著效果。其中,3种不同的波状水翼空化抑制率分别为15.7%、18.6%和27.9%,压力脉动幅值分别降低了55.3%、67.3%和74.6%。分析表明,波浪前缘的引入使得空化的分区效应更加凸显,空化从波谷处初生,增大波幅或减小波长都可以加强对空化的抑制效果,并可以提高升力系数以及显著降低水翼表面的压力脉动。前缘波浪构型还将诱发向下游发展的对转涡结构,不同前缘参数的波状水翼涡结构的演化是相似的,空泡发展与溃灭的整个过程对涡结构的发展也具有显著影响。  相似文献   

15.
为了解极端波浪非线性特征,明确波群在演化过程中的水动力学特性,针对一系列高斯波群进行了深水物理试验分析。试验结果显示,增加波陡或波群宽度,均可使波面偏度Sk发生明显变化,尤其当波浪发生破碎后,在破碎区域内,波面偏度变化范围剧烈增大,说明该偏度极大值可能作为判断破碎的一个指标。波陡和波群宽度对波面不对称度影响程度不同:当波陡或波群宽度增加后,波峰不对称度所受影响最大,波峰前端波谷不对称度次之,波峰后端波谷不对称度所受影响最小,但仍不可忽略。在波浪演化过程中,幅值谱出现不同程度频带下移,波浪破碎后,会出现永久频带下移;当调制不稳定发生时,随着调制不稳定指数增加,频带下移量呈现快速增长趋势。  相似文献   

16.
一、问题的提出在分析海浪的特征时,波高是一项基本的要素。因为它反映了海浪的主要特征。海浪的跨零波高定义为跨零点一侧的显著波峰与另一侧的显著波谷之间的高度差。所以,要想得到波高,首先要找出波高对应的峰值和谷值,即记录曲线上的极值(包括极大值和极小值),然后  相似文献   

17.
杨武  白志刚  余海涛  马暄  臧颖  陈成  戴磊 《海洋工程》2016,34(5):101-108
海洋波浪能可再生能源的开发是未来发展的趋势,开发设计更为高效的波能转换利用装置是开发利用波浪能的关键。根据脉搏脉动机理,设计发明了一种柔性胶囊发电装置,利用柔性结构的强收缩性,让其随着波峰波谷收缩扩张,进而形成脉动来传输水体,使相连尾端竖管内水位随着脉动骤升骤降来压缩排出和快速吸入空气。进行了一系列探索性实验,着重研究柔性材料厚度、波高、周期、气室孔径对该试验装置的波能转换率的影响,数据表明,柔性硅胶管有很好的聚波作用,气室的设计和建造对波能转换效率有较大的影响。  相似文献   

18.
波高的统计分析是海浪分析的重要内容之一,波高的统计特征在时间域上比较充分地反映了海浪的统计特征。按物理学的一般概念,物体完成一次振动所需的时间称为物体振动的周期,物体离开平衡位置的最大位移称为物体振动的振幅。波高由此就可定义为两个相邻的显著波峰与显著波谷之间的铅直距离。假设下图是一段海浪的定点连续观测记录,按照上述  相似文献   

19.
在讨论海水高光谱数据波形波峰和波谷产生机理的基础上,通过对高光谱数据波形结构形态的分析,提出了一组描述吸收峰和反射峰的特征参数,并且设计了一种计算这组特征参数的算法,然后基于其中的中心波长、强度和对应中心波长的值提出了3种赤潮识别的方法。试验证明这种方法可以成功地提取出吸收峰和反射峰的特征参数,3种赤潮识别方法可以进行赤潮的识别与预测。  相似文献   

20.
波浪破碎是海洋中最常见的现象之一,其能够对海洋中的结构物产生巨大的波浪力作用。本文在大比尺波浪水槽通过聚焦波的方法生成了极端波浪和不同破碎阶段的破碎波浪,并对其冲击桩柱过程中的点压力进行了测量,进而采用连续小波变换的方法,对桩柱上点压力的分布及大小进行了细致分析。结果表明,多次重复试验下,相比非破碎极端波浪,破碎极端波浪产生的点压力离散性更强;波浪破碎程度越大,测点位置越靠近波峰,则点压力离散程度越大;破碎波的最大点压力出现在1.2倍的最大波面附近,且其大小可达3倍的最大静水压力;基于点压力小波谱,不同破碎阶段破碎波产生冲击作用不同,对于波浪作用桩柱前波浪已经发生破碎的情况,其冲击区域更大,点压力分布更复杂;而对于桩面破碎的情况,其造成的波浪总力更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号