首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raindrop impact can be a major contributor to particle mobilization for soils and other granular materials. In previous work, water repellent soils, comprised of hydrophobic particles, have been shown to exhibit greater splash erosion losses under multiple drop impact. However, the underlying principle differences in splash behavior between hydrophobic and hydrophilic granular surfaces have not been studied to date. In this study the effects of particle hydrophobicity on splash behaviour by a single water drop impact were examined using high‐speed videography. Water drops (4 mm in diameter) were dropped on beds of hydrophilic and hydrophobic glass beads (sieved range: 350–400 µm), serving as model soil particles. The drop velocity on impact was 2.67 m s‐1, which corresponds to ~30% of the terminal velocity of a raindrop of similar size. The resulting impact behaviour was measured in terms of the trajectories of particles ejected from the beds and their final resting positions. The response to the impacting water drop was significantly different between hydrophilic and hydrophobic particles in terms of the distance distribution, the median distance travelled by the particles and number of ejected particles. The greater ejection distances of hydrophobic particles were mainly the result of the higher initial velocities rather than differences in ejecting angles. The higher and longer ejection trajectories for hydrophobic particles, compared with hydrophilic particles, indicate that particle hydrophobicity affects splash erosion from the initial stage of rainfall erosion before a water layer may be formed by accumulating drops. The ~10% increase in average splash distance for hydrophobic particles compared with hydrophilic particles suggests that particle hydrophobicity can result in greater net erosion rate, which would be amplified on sloping surfaces, for example, by ridges in ploughed agricultural soils or hillslopes following vegetation loss by clearing or wildfire. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This study developed a one‐dimensional model of downslope rain splash transport based on field experiments and previous studies. The developed model considers soil detachment processes, ground cover, probability densities, and the effect of overland run‐off in preventing detachment. Field monitoring was conducted to observe precipitation run‐off, ground cover, and sediment production on steep hillslopes. Field‐observed data were used to develop the splash detachment rate equation, probability densities for splash transport, and the maximum splash transport distance. Observed and estimated splash transport showed overall agreement, with some differences for small storm events or events with relatively low intensity, probably caused by variation of overland run‐off depth and connectivity as well as differences in soil surface cohesion at various degrees of wetness. Our model can provide insights on the interactions among rainfall intensity, soil surface condition, soil wetness, and splash transport on forested hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The drastic growth of population in highly industrialized urban areas, as well as fossil fuel use, is increasing levels of airborne pollutants and enhancing acid rain. In rapidly developing countries such as Iran, the occurrence of acid rain has also increased. Acid rain is a driving factor of erosion due to the destructive effects on biota and aggregate stability; however, little is known about its impact on specific rates of erosion at the pedon scale. Thus, the present study aimed to investigate the effect of acid rain at pH levels of 5.25, 4.25, and 3.75 for rainfall intensities of 40, 60, and 80 mm h?1 on initial soil erosion processes under dry and saturated soil conditions using rainfall simulations. The results were compared using a two‐way ANOVA and Duncan tests and showed that initial soil erosion rates with acidic rain and non‐acidic rain under dry soil conditions were significantly different. The highest levels of soil particle loss due to splash effects in all rainfall intensities were observed with the most acidic rain (pH = 3.75), reaching maximum values of 16 g m?2 min?1. The lowest levels of particle losses were observed in the control plot where non‐acidic rain was used, with values ranging from 3.8 to 8.1 g m?2 min?1. Similarly, under saturated soil conditions, the lowest level of soil particle loss was observed in the control plot, and the highest peaks of soil loss were observed for the most acidic rains (pH = 3.75 and pH = 4.25), reaching maximum average values of 40 g m?2 min?1. However, for saturated soils with acidic water but with non‐acidic rain, the highest soil particle loss was observed for the control plot for all the rainfall intensities. In conclusion, acidic rain has a negative impact on soils, which can be more intense with a concomitant increase in rainfall intensity. Rapid solutions, therefore, need to be found to reduce the emission of pollutants into the air, otherwise, rainfall erosivity may drastically increase.  相似文献   

4.
This paper describes laboratory testing of 148 samples collected from Southern Alberta for erosion by wash and splash. Rainfall intensity was held constant during these tests. Soil aggregation was the most significant variable explaining soil loss. The significance of other soil properties, such as organic carbon and clay content is variable, depending on the interrelationships among aggregate stability, organic content, and clay content of particular soils. Variations in erodibility of the major soils examined are explained by the resistance of aggregates to compaction and dispersion. Splash detachment and wash transport are the dominant erosion mechanisms in inter-rill areas.  相似文献   

5.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

6.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

8.
FRP抗震加固混凝土梁柱节点的受剪承载力分析   总被引:3,自引:1,他引:2  
通过采用SGFRP、HFRP加固的四个混凝土梁柱节点在低周反复荷载作用下的抗震性能对比试验研究,提出了FRP加固节点受剪承载力的计算公式,并基于分析给出了相关计算参数的工程设计建议取值,并对加固方式、纤维品种、纤维粘贴角度等主要因素对节点抗剪承载能力的影响机理进行了分析,结果表明:在节点核心区和梁柱端头粘贴纤维可以有效的提高节点的受剪承载能力;加固方式直接影响节点受剪承载能力的大小。  相似文献   

9.
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Sur) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.  相似文献   

10.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ‘wet’ graminoid meadow vegetation were on average five times stronger than those colonized by ‘dry’ xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
为了研究高温中植筋胶的拉伸抗剪强度,进行了57个植筋试件在不同温度下的拉拔试验。试验温度共11个,温度范围为25~350℃。采用电炉加热升温,当到达设定温度后立即进行拉拔实验,每个温度下做5组试件。试验中量测电炉温度,植筋试件温度,植筋滑移和拉拔力。试验结果表明:随着温度升高,植筋胶的拉伸抗剪强度显著下降,当温度高于350℃后,植筋胶基本丧失承载力,约为常温下的4%左右。  相似文献   

13.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A conceptual model is described for the prediction of wind erosion rates dependent on the distribution of impact energy delivered to the surface by saltating grains, P[Ei], and the distribution of local surface strength, P[Es]. Methods are presented for the measurement of both distributions and consequent loss of material from the bed. It is concluded that saltating sand grains can rupture weak crusts under even moderate wind conditions, and that the rate of erosion will depend on the shape of the distribution tails. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Mechanistic models have been proposed for soil piping and internal erosion on well‐compacted levees and dams, but limited research has evaluated these models in less compacted (more erodible) soils typical of hillslopes and streambanks. This study utilized a soil box (50 cm long, 50 cm wide and 20 cm tall) to conduct constant‐head, soil pipe and internal erosion experiments for two soils (clay loam from Dry Creek and sandy loam from Cow Creek streambanks) packed at uniform bulk densities. Initial gravimetric moisture contents prior to packing were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1‐cm diameter rod was placed horizontally along the length of the soil bed during packing and carefully removed after packing to create a continuous soil pipe. A constant head was maintained at the inflow end. Flow rates and sediment concentrations were measured from the pipe outlet. Replicate submerged jet erosion tests (JETs) were conducted to derive erodibility parameters for repacked samples at the same moisture contents. Flow rates from the box experiments were used to calibrate the mechanistic model. The influence of the initial moisture content was apparent, with some pipes (8% moisture content) expanding so fast that limited data was collected. The mechanistic model was able to estimate equivalent flow rates to those observed in the experiments, but had difficulty matching observed sediment concentrations when the pipes rapidly expanded. The JETs predicted similar erodibility coefficients compared to the mechanistic model for the more erodible cases but not for the less erodible cases (14% moisture content). Improved models are needed that better define the changing soil pipe cross‐section during supply‐ and transport‐limited internal erosion, especially for piping through lower compacted (more erodible) soils as opposed to more well‐compacted soils resulting from constructing levees and dams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
膨胀土中原生裂隙面的存在往往导致膨胀土边坡的失稳。选取南水北调中线工程南阳段膨胀土进行裂隙面强度试验研究,研究成果表明,裂隙面中填充的灰白色粘土的含水量远高于两侧不含裂隙膨胀土的含水量,裂隙面的峰值强度不仅远远小于不含裂隙膨胀土的峰值强度,而且也小于不含裂隙膨胀土的残余强度。  相似文献   

18.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
L形短肢剪力墙由于其肢短的特点,已经广泛应用于民用建筑的外围结构。为研究使用高性能材料加强后的新型L形短肢剪力墙的抗震性能,本文基于不同轴压比、高宽比和配箍率,设计制作了六片短肢剪力墙试验模型,对其进行了低周往复荷载试验,根据试验结果,对试件的滞回性能、刚度退化、破坏形态、耗能能力等抗震性能指标进行分析与研究。结果表明:高强材料的使用提高了试件的整体承载能力;在满足最小配箍率的前提下适当增大配箍率有利于提高试件的承载力和延性;轴压比大小是影响试件破坏形态的主要因素,随着轴压比逐渐增大,试件趋于脆性破坏;高厚比大小是影响试件抗震性能的次要因素,其影响程度主要根据工程实际情况来确定,但可以肯定的是,较大高厚比有利于提升墙体的稳定性和承载能力。  相似文献   

20.
梁斌  张海  姚新强  高武平  陈贺 《地震工程学报》2020,42(4):856-861,947
砖砌体结构是农村传统农居建筑的主要结构形式,如何精确评价其抗震能力具有重要的研究意义。目前既有传统农居中,20世纪80、90年代砖砌体结构仍是其重要的组成部分。为研究既有传统砖砌体结构的抗剪性能,首先对水泥砂浆、白灰砂浆、炉渣砂浆、黄泥砂浆4种典型砂浆开展抗压强度试验;然后对4种典型砂浆砌筑的砌体进行沿通缝抗剪强度试验,通过与传统老旧红砖砌体抗剪强度的平均值和公式值进行对比,对砌体抗剪强度计算公式进行修正后得到修正公式;最后对比修正值、标准值和设计值,对传统农居进行准确的砖砌体抗剪强度评估。本项研究主要为传统农居砖砌体结构的抗震性能评估、抗震加固以及抗震设计提供技术支持与科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号