首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.  相似文献   

3.
The 137°E repeat hydrographic section of the Japan Meteorological Agency across the western North Pacific was initiated in 1967 as part of the Cooperative Study of the Kuroshio and Adjacent Regions and has been continued biannually in winter and summer. The publicly available data from the section have been widely used to reveal seasonal to decadal variations and long-term changes of currents and water masses, biogeochemical and biological properties, and marine pollutants in relation to climate variability such as the El Niño-Southern Oscillation and the Pacific Decadal Oscillation. In commemoration of the 50th anniversary in 2016, this review summarizes the history and scientific achievements of the 137°E section during 1967–2016. Through the publication of more than 100 papers over this 50-year span, with the frequency and significance of the publication increasing in time, the 137°E section has demonstrated its importance for future investigations of physical–biogeochemical–biological interactions on various spatiotemporal scales, and thereby its utility in enhancing process understanding to aid projections of the impact of future climate change on ocean resources and ecosystems over the twenty-first century.  相似文献   

4.
In order to examine latitudinal distribution and seasonal change of the surface oceanic fCO2, we analyzed the data obtained in the North Pacific along 175°E during the NOPACCS cruises in spring and summer of 1992–1996. Except for around the equator where the fCO2 was significantly affected by the upwelling of deep water, the latitudinal distribution of fCO2 showed distinctive seasonal variation. In the spring, the fCO2 decreased and then increased going southward with the minimum value of about 300 µatm around 35°N, while in the summer, the fCO2 displayed high variability, showing minimum and maximum values at latitudes of around 44° and 35°N, respectively. It was also found that the fCO2 was well correlated with the SST, but the relationship between the two was different for different hydrographic regions. In the subpolar gyre, the frontal regions between the Water-Mass Front and the Kuroshio bifurcation front, and between the Kuroshio bifurcation front and the Kuroshio Extension current, SST, DIC and TA influenced the seasonal fCO2 change through seasonally-dependent biological activities and vertical mixing and stratification of seawater. In the central subtropical gyre and the North Equatorial current, the seasonal fCO2 change was found to be produced basically by changes in SST and DIC. The summertime oceanic fCO2 generally increased with time over the period covered by this study, but the increased rate was clearly higher than those expected from other measurements in the western North Pacific.  相似文献   

5.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   

6.
Seawater samples were collected in the North Pacific along 175°E during a cruise of the Northwest Pacific Carbon Cycle Study (NOPACCS) program in 1994. Many properties related to the carbonate system were analyzed. By using well-known ratios to correct for chemical changes in seawater, the CO2 concentration at a given depth was back calculated to its initial concentration at the time when the water left the surface in winter. We estimated sea-surface CO2 and titration alkalinity (TA) in present-day winter, from which we evaluated the degree of air-sea CO2 disequilibrium in winter was. Using a correction factor for air-sea CO2 disequilibrium in winter, we reconstructed sea-surface CO2 in pre-industrial times. The difference between the back-calculated initial CO2 and sea-surface CO2 in pre-industrial times should correspond to anthropgenic CO2 input. Although the mixing of different water masses may cause systematic error in the calculation, we found that the nonlinear effect induced by the mixing of different water masses was negligible in the upper layer of the North Pacific subtropical gyre along 175°E. The results of our improved method of assessing the distribution of anthropogenic CO2 in that region show marked differences from those obtained using the previous back-calculation method.  相似文献   

7.
The dissolved inorganic carbon (DIC) and related chemical species have been measured from 1992 to 2001 at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. DIC (1.3∼2.3 µ mol/kg/yr) and apparent oxygen utilization (AOU, 0.7∼1.8 µmol/kg/yr) have increased while total alkalinity remained constant in the intermediate water (26.9∼27.3σθ). The increases of DIC in the upper intermediate water (26.9∼27.1σθ) were higher than those in the lower one (27.2∼ 27.3σθ). The temporal change of DIC would be controlled by the increase of anthropogenic CO2, the decomposition of organic matter and the non-anthropogenic CO2 absorbed at the region of intermediate water formation. We estimated the increase of anthropogenic CO2 to be only 0.5∼0.7 µmol/kg/yr under equilibrium with the atmospheric CO2 content. The effect of decomposition was estimated to be 0.8 ± 0.7 µmol/kg/yr from AOU increase. The remainder of non-anthropogenic CO2 had increased by 0.6 ± 1.1 µmol/kg/yr. We suggest that the non-anthropogenic CO2 increase is controlled by the accumulation of CO2 liberated back to atmosphere at the region of intermediate water formation due to the decrease of difference between DIC in the winter mixed layer and DIC under equilibrium with the atmospheric CO2 content, and the reduction of diapycnal vertical water exchange between mixed layer and pycnocline waters. In future, more accurate and longer time series data will be required to confirm our results.  相似文献   

8.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

9.
《Oceanologica Acta》1999,22(1):57-66
Observations made during a “La Niña” situation (April–May 1996) in the equatorial Pacific upwelling, between 165° E and 150° W, show the classic deepening of hydrological isolines from east to west, resulting in zonal gradients for surface temperature and macronutrients. However, contrasting with such a gradient, no clear zonal variation could be seen for integrated planktonic biomasses and carbon fluxes, namely: chlorophyll a, bacterial abundances, particulate organic phosphorus, mesozooplankton ash-free dry weight, primary production, and the sinking flux of particulate organic carbon (POC). Moreover, mean values of these parameters along the zonal equatorial transect, are not significantly different from those of a 7-day-long time series station made at 0°, 150° W in October 1994 during an El Niño period. Such a steady zonal distribution of planktonic parameters seems to be characteristic of equatorial Pacific upwelling west of the Galapagos Islands so that the spatial distributions of nutrient concentrations and planktonic biomass appear to be uncoupled. This is consistent with the High Nutrient-Low Chlorophyll (HNLC) concept, in which primary production is not controlled directly by macronutrient concentrations. The lack of zonal gradient also suggests that carbon budget of the equatorial Pacific is primarily controlled by oscillations in the zonal and meridian extension of the HNLC area, rather than by values of planktonic biomasses and carbon fluxes within the upwelled water, which are quite constant.  相似文献   

10.
1Introduction DuringtheTOGA COARE,extensivejointin ternationaloceanicobservationswerecarriedoutin thewesternequatorialPacificOceanandavasta mountofvaluabledatawereobtained.Themaindata usedhereincludethedatafromasinglemooringin strumentarrayat1°45′S,156°E,deployedbythe WoodsHoleOceanographicInstitution(WHOI)and theCTD(profilerofconductivity-temperature-depth)datacollectedbytheChineseRVXiangy anghongNo.5.Fangetal.(2000)described brieflytheseobservationdataandanalyzedthedis persion…  相似文献   

11.
By analyzing a data set collected using a moored instrument array and CTD during TOGA-COARE, it is found that there exist remarkable internal tides in the western equatorial Pacific Ocean around 1°45′S,156°E, whose horizontal wavenumber (wavelength), vertical wavenumber, h 156° orizontal propagation speed and vertical propagation speed are 3.3×10-2km-1(210 km),-1.6×10-3m, 2.0 m/s and -3.8 cm/s, respectively, that is, the waveform propagates downwards slantingly. Moreover, the propagating direction rotates statistically clockwise as the depth increases and its cause is unclear.  相似文献   

12.
A quantitative estimate of the temperature and salinity variations in the Labrador Sea Water (LSW), the Iceland-Scotland Overflow Water (ISOW), and the Denmark Strait Overflow Water (DSOW) is given on the basis of the analysis of repeated observations over a transatlantic section along 60°N in 1997, 2002, 2004, and 2006. The changes distinguished in the research evidence strong warming and salinification in the layers of the Labrador Sea Water and deep waters at the latitude of the section. The maximum increments of the temperature (+0.35°C) and salinity (+0.05 psu) were found in the Irminger Basin in the core of the deep LSW, whose convective renewal in the Labrador Sea stopped in the mid-1990s. The long-term freshening of the ISOW, which started in the mid-1960s, changed in the mid-1990s to a period of intense stable warming and salinification of this water. By 2005, the salinity in the core of the ISOW in the Iceland Basin increased to the values (~34.99 psu) characteristic of the mid-1970s. In 2002, the warming “signal” of the ISOW reached the Irminger Basin. From 1997 to 2006, the warming and salinification of the columns of the Labrador Sea Water and deep waters became as high as 0.2°C and 0.03 psu, respectively. The character of the long-term variations in the thermohaline properties of the LSW and ISOW from the 1950s evidence that these variations were nearly in-phase and correlated with the low-frequency component of the North Atlantic Oscillation.  相似文献   

13.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

14.
Partial pressure of CO2 in surface sea water (pCO2) was measured continuously off Sanriku in May, 1997 by a new pCO2 measurement system. We have examined the relation of pCO2 to physical factors such as temperature, salinity and density, chemical and biological factors such as nutrients and carbonate system and chlorophylla. In the Kuroshio region pCO2 was not correlated to physical, chemical and biological factors in the range of 260 to 290 μatom. In transition water (Tr1) between Kuroshio and the Oyashio second branch, pCO2 was weakly correlated to physical factors and strongly correlated to nutrients. In transition water (Tr2) between the Oyashio first and second branches, pCO2 was highly correlated to temperature (SD: 10.9 μatom) and salinity (SD: 8.6 μatom) and also to nutrients. In transition water (Tr1+Tr2), pCO2 was highly multivariately correlated to temperature (T), salinity (S), chlorophylla (CH) (or nitrate+nitrite (N)) as follows, pCO2(μatom)= 10.8×T(°C)+27.7×S+2.57CH(μg/1) −769, R2= 0.86, SD = 20.9, or pCO2(μatom)= 3.9×T(°C)+25.5×S+16.0NO3(μM) −686, R2= 0.99, SD = 6.4. Moreover, pCO2 was predicted by only two factors, one physical (S) and the other chemical/biological (N) as follows: pCO2 (μatom)=32.8×S+19.4N−908, R2=0.97, SD=8.4. The pH measured at 25°C was well correlated with normalized pCO2 at a fixed temperature. In the Oyashio region pCO2 was decreased to 160 μatom, probably because of spring bloom, but was not correlated linearly to chlorophylla. The results obtained showed the possibility of estimating pCO2 of the Oyashio and transition regions in May by satellite remote sensing of SST, but the problem of estimation of pCO2 in Kuroshio water remains to be solved.  相似文献   

15.
16.
We conducted 1-year-long mooring observations four times below 2000?m, slightly south of the equator (2°39?? to 4°35??S) at 162°E in the Melanesian Basin in order to detect the southward deep western boundary return current crossing the equator. Contrary to our initial expectation of the deep flow scheme in the equatorial western boundary region, the observed results indicated a fairly complicated flow configuration. We analyzed the results with the help of a high-resolution model simulation. The ensemble average of the horizontal flow at each level near the deep western boundary indicates a significant westward flow at 2000 and 2250?m, with an insignificant southward component at 2500 and 2750?m. The annual mean meridional transports are very small (>1?Sv) and insignificant, with an ensemble-averaged value of 0.3?Sv (southward) ±0.4?Sv at most. Combining this with high-resolution model results, it is deduced that the southward transport of the deep western boundary current (DWBC) leaving the equator may be smaller than those obtained by low-resolution models, because of trapping of its fairly large fraction in the equatorial zone. Annual-scale flow patterns are classified into several categories, mainly based on the meridional-flow dominating or the zonal-flow dominating pattern. A case of the meridional-flow dominating patterns may possibly capture an annual-scale variability of DWBC, because its meridional transport variation, though somewhat weak, is consistent with that simulated. The zonal-flow dominating regime includes two types: long-lasting, almost steady westward flows and long-term zonal flow oscillations. The former seems to comprise well-known zonally elongated and meridionally narrow structures of the zonal flow beneath the thermocline in the equatorial region. The ensemble-averaged flow mentioned above is dominated by this type at the upper two levels 2000 and 2250?m, with total westward transport of 1.6?±?0.7?Sv. The latter type seems to be a manifestation of the vertically propagating equatorial annual Rossby waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号