首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
华北降水年代际变化特征及相关的海气异常型   总被引:56,自引:6,他引:56       下载免费PDF全文
利用近50年华北地区26个站逐月降水观测资料和全球大气海洋分析资料,分析了华北降水的年代际变化特征及其和全球海气系统年代际变化的关系.对华北降水距平指数变化分析表明,近50年来华北降水具有减少的总体趋势,叠加在该趋势之上的是年代际变化,其中1965年和1980年发生了两次跃变,使得20世纪80年代干旱尤为严重.在对华北地区降水年代际变化特征分析的基础上,揭示了与华北降水年代际异常相伴随的大气环流和上层海洋热力异常型.结果表明,华北降水年代际异常与太平洋上层海洋热力状况异常有显著关系,主要表现为太平洋年代际振荡(PDO)与华北降水异常的相关.在年代际时间尺度上,华北干旱与上层海洋热力及大气环流异常的配置关系如下:当华北地区干旱时,则热带中东太平洋海温偏高,北太平洋中部海温偏低,即太平洋上主要表现为PDO暖位相,全球大部分地区(包括华北地区)气温偏高,青藏高原地区气温偏低,日本北部及东西伯利亚气压异常偏低,华北及其以南大片地区气压偏高,华北地区由异常西北风控制,不利于水汽向华北地区输送.  相似文献   

2.
Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even 30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rate in comparison with 20-year empirical return levels is 6.8%. The historical maximum precipitation is more than twice the 50-year return levels.  相似文献   

3.
华北时变重力场离散小波多尺度分解   总被引:1,自引:2,他引:1  
刘芳  祝意青  陈石 《中国地震》2013,29(1):124-131
利用华北地区地震重力监测网的绝对重力与相对重力多期重复观测资料,处理获取不同时空尺度的华北区域重力场动态变化图像.利用二维小波分解技术,将不同场源深度异常进行了分离,并对不同时空尺度的重力变化给出了解释,提高了对华北地区重力场变化趋势的认识水平.在此基础上,通过对小波细节的功率谱分析,可以获得各阶小波变换逼近及小波细节分析图所对应的场源深度.研究结果表明,不同时空尺度的重力场变化对于深入认识华北地区潜在地震危险性具有一定的科学意义.  相似文献   

4.
5.
中国降水年际和年代际变率对空间尺度的敏感性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用中国740站45年降水资料按5种分辨率分气候区计算了降水年际和年代际变率. 降水年际和年代际变率对空间尺度的敏感性分析表明,中国各气候区降水年际变率对空间尺度的敏感性都随空间尺度的增加而逐渐减小,且存在明显的季节变化,而年代际变率对空间尺度的敏感性却随空间尺度的增加而增大,但不存在季节变化;由于中国各气候区降水的特殊性,各气候区降水年际和年代际变率对空间尺度的敏感程度存在不可忽视的差异.在年际和年代际尺度上,西南地区降水变率对空间尺度都是最敏感的,因而该区域降水年际和年代际变率信号的检测最困难.而华南地区在年际尺度上比较敏感,年代际尺度却不敏感,但华南地区在年际和年代际尺度上区域内降水分布的非均匀程度对空间尺度的敏感性都最大.  相似文献   

6.
Historical trends in Florida temperature and precipitation   总被引:1,自引:0,他引:1  
Because of its low topographic relief, unique hydrology, and the large interannual variability of precipitation, Florida is especially vulnerable to climate change. In this paper, we investigate a comprehensive collection of climate metrics to study historical trends in both averages and extremes of precipitation and temperature in the state. The data investigated consist of long‐term records (1892–2008) of precipitation and raw (unadjusted) temperature at 32 stations distributed throughout the state. To evaluate trends in climate metrics, we use an iterative pre‐whitening method, which aims to separate positive autocorrelation from trend present in time series. Results show a general decrease in wet season precipitation, most evident for the month of May and possibly tied to a delayed onset of the wet season. In contrast, there seems to be an increase in the number of wet days during the dry season, especially during November through January. We found that the number of dog days (above 26.7 °C) during the year and during the wet season has increased at many locations. For the post‐1950 period, a widespread decrease in the daily temperature range (DTR) is observed mainly because of increased daily minimum temperature (Tmin). Although we did not attempt to formally attribute these trends to natural versus anthropogenic causes, we find that the urban heat island effect is at least partially responsible for the increase in Tmin and its corresponding decrease in DTR at urbanized stations compared with nearby rural stations. In the future, a formal trend attribution study should be conducted for the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we investigated the variability of precipitation conditions in the Haihe River basin (HRB) during 1961–2010 by analyzing four daily precipitation scenarios. These scenarios were set with the values of, equal to 0 mm/day, 10–20 mm/day, 20–50 mm/day, and greater than 50 mm/day, which were denoted as P0, P10, P20, and P50, respectively. Results indicate that the mean values of daily precipitation decline, and its fluctuation becomes weak with years in HRB. The contour of daily precipitation with the mean value of 1.4 mm/day moves more than 100 km toward southeast in the basin from 1960s to 2000s. The variations of four precipitation scenarios show difference. The Tianjin and Langfang cities were the P0 drought center in HRB after 1980s, and the days and regions without precipitation increase with years. The magnitude of P10 extrema shows no significant changes over the last 50 years, but the rainfall centers vary with areas in HRB. The magnitude of P20 extrema shows no obvious changes in 1961–2000 but increases in 2000s. The magnitude of P50 extrema obviously declines in the last 50 years, with the rainfall center moving from northeast to south of HRB. Urbanization impacts are reflected in some cities in 1980s and 1990s, but after 2000, the urbanization impacts were not clearly detected due to the significant precipitation decreases in HRB. In summary, precipitation decrease is caused by the decreases of P50 extrema rather than P10 and P20 extrema in HRB, which would be favorable for the flood resources utilization through ample‐low flow operations over space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
African precipitation trends are commonly analyzed using short-term data observed over small areas. This study analyzed changes in long-term (1901–2015) annual and seasonal precipitation of high spatial (0.5°?×?0.5° grid) resolution covering the entire African continent. To assess an acceleration/deceleration of the precipitation increase/decrease, trend magnitude (mm/year) over the period 1991–2015 was subtracted from that of 1965–1990 to obtain Slope Difference (SD, mm/year). Co-variation of precipitation sub-trends with changes in large-scale ocean–atmosphere conditions was investigated. Regardless of the trend significance, in most parts of Africa, annual precipitation exhibited negative (positive) trends over the period 1965–1990 (1991–2015). Thus, the continent was, on average, recently (from 1991 to 2015) wetter than it was over the period 1965–1990. From 1901 to 2015, the null hypothesis H0 (no trend) was rejected (p < 0.05) for annual precipitation decrease over West Africa especially along the coastal areas near the Gulf of Guinea. The H0 was also rejected (p < 0.05) for the increase in annual and September–November precipitation of some areas along the Equatorial region (such as in Gabon and around Lake Victoria). For both annual and seasonal precipitation, the least SD values in the range ??1 to 1 mm/year were obtained in areas north of 10° N. The SD value went up to about 20 mm/year over the Sahel belt especially for the peak monsoon (June–August season). For the March–May precipitation, positive SD values were obtained in the Western part of Southern Africa. However, negative SD values (around ??5 mm/year) were obtained in the Horn of Africa. Variation in sub-trends of the East African precipitation was found to be driven by changes in Sea Surface Temperature (SST) of the Indian and Atlantic Oceans. Variability in sub-trends of the West African precipitation is linked to changes in SST of the Atlantic Ocean. Changes in sub-trends of the South African precipitation correspond to anomalies in SST from the Pacific and Indian Oceans. Knowledge of precipitation changes and possible drivers is vital for predictive adaptation regarding the impacts of climate variability on hydro- or agro-meteorology.  相似文献   

9.
华北地区降水事件变化和暴雨事件减少原因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
使用北京、天津、河北、山西的37个气象观测站的1961~2008年逐日降水资料和NCEP、EC环流资料,对华北降水事件和暴雨事件减少原因进行分析.结果表明,华北地区盛夏暴雨事件对夏季降水量和全年降水量变化有重要影响,近50年盛夏暴雨事件呈显著线性减少趋势,这与东亚夏季风减弱使得从南边界进入华北的水汽通量大量减少以及副热带高压位置南移有关.此外,盛夏暴雨事件减少还与印度对流减弱和菲律宾对流加强、125°E越赤道气流减弱和145°E越赤道气流加强有很好的对应关系.这为认识华北降水减少变化提供了科学依据.  相似文献   

10.
Interannual variability in western US precipitation   总被引:6,自引:0,他引:6  
Low-frequency (interannual or longer period) climatic variability is of interest, because of its significance for the understanding and prediction of protracted climatic anomalies. Since precipitation is one of the key variables driving various hydrologic processes, it is useful to examine precipitation records to better understand long-term climate dynamics. Here, we use the multi-taper method of spectral analysis to analyze the monthly precipitation time series (both occurrence and amount) at a few stations along a meridional transect from Priest River, ID to Tucson, AZ. We also examine spectral coherence between monthly precipitation and widely used atmospheric indices, such as the central Northern Pacific (CNP) and southern oscillation index (SOI). This analysis reveals statistically significant ‘signals' in the time series in the 5–7 and 2–3 year bands. These interannual signals are consistent with those related to El-Niño southern oscillation (ENSO) and quasi-biennial variability identified by others.  相似文献   

11.
Abstract

This study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.

Editor Z.W. Kundzewicz; Associate editor C.-Y. Xu

Citation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335.  相似文献   

12.
In this article, by using the daily precipitation data measured at 58 meteorological stations, spatial and temporal variability of daily precipitation including zero rainfall values (called “precipitation”) and without zero rainfall values (called “rain”) and four precipitation extrema (P0, P20, P50, and P100 representing the daily precipitation with the magnitude smaller than 0.1 mm, bigger than 20 mm, 50 mm, and 100 mm per day, respectively) in the Yangtze River Delta (YRD) during 1958–2007 were analyzed, and the effects of urbanization were further investigated. Results indicate that (i) differing from the downward trends in 1958–1985, daily precipitation and rain in 1986–2007 show slowly downward trends in the mid YRD but show upward trends in the northern and southern YRD. (ii) Spatial and temporal variability of the rain is more complex than daily precipitation. Both of them become smaller but show more obvious fluctuations in 1986–2007. (iii) Urbanizations cause not only the urban rainfall island problem but also more obvious fluctuations of rain intensity in the mid YRD, reflecting more uncertainty of daily precipitation variability. (iv) Urbanizations have little effects on the variability of P0 and P100 but cause notable increases of P20 and P50. (v) The spatial variability of daily precipitation and precipitation extrema in 1958–1985 clearly shows a breakpoint at 30°20′N latitude, but the breakpoint disappears afterward because of the effects of urbanization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

The trends of annual, seasonal and monthly precipitation in southern China (Guangdong Province) for the period 1956–2000 are investigated, based on the data from 186 high-quality gauging stations. Statistical tests, including Mann-Kendall rank test and wavelet analysis, are employed to determine whether the precipitation series exhibit any regular trend and periodicity. The results indicate that the annual precipitation has a slightly decreasing trend in central Guangdong and slight increasing trends in the eastern and western areas of the province. However, all the annual trends are not statistically significant at the 95% confidence level. The average precipitation increases in the dry season in central Guangdong, but decreases in the wet season, meaning that the precipitation becomes more evenly distributed within the year. Furthermore, the analysis of monthly precipitation suggests that the distribution of intra-annual precipitation changes over time. The results of wavelet analysis show prominent precipitation with periods ranging from 10 to 12 years in every sub-region in Guangdong Province. Comparing with the sunspot cycle (11-year), the annual precipitation in every sub-region in Guangdong province correlates with Sunspot Number with a 3-year lag. The findings in this paper will be useful for water resources management.

Editor Z.W. Kundzewicz; Associate editor Sheng Yue

Citation Dedi Liu, Shenglian Guo, Xiaohong Chen and Quanxi Shao, 2012. Analysis of trends of annual and seasonal precipitation from 1956 to 2000 in Guangdong Province, China. Hydrological Sciences Journal, 57 (2), 358–369.  相似文献   

14.
Daily precipitation amounts show spatial variation over sub-continential regions. Point measurements, representative for regions of land, have to be interpolated towards unobserved locations. In this study four days in 1984 were selected to investigate the spatial variability of daily precipitation amount in North-western Europe in relation to the meteorological conditions. Data were interpolated using Kriging. Crossvalidation was used to compare interpolated values with measured values. Large differences in the spatial structure of daily precipitation amount are obsered as a result of different meterological conditions. Stratification of the study area into a coastal, a mountainous and an interior stratum proved to be successful, reducing the Mean Squared Error of Prediction with up to 55%.  相似文献   

15.
Daily precipitation amounts show spatial variation over sub-continential regions. Point measurements, represntative for regions of land, have to be interpolated towards unobserved locations. In this study four days in 1984 were selected to investigate the spatial variability of daily precipitation amount in north-western Europe in relation to the meteorological conditions. Data were interpolated using kriging. Crossvalidation was used to compare interpolated values with measured values. Large differences in the spatial structure of daily precipitation amount are observed as a result of different meteorological conditions. Stratification of the study area into a coast, a mountain and an interior stratum proved to be successful, reducing the Mean Squared Error of Prediction with up to 55%.This article was inadvertently printed in SHH 6(3) 1992 without figures and figure legends. The article is being reprinted in this issue in complete form. The editor apologizes for this error in publication.  相似文献   

16.
Abstract

This study aims to predict the daily precipitation from meteorological data from Turkey using the wavelet—neural network method, which combines two methods: discrete wavelet transform (DWT) and artificial neural networks (ANN). The wavelet—ANN model provides a good fit with the observed data, in particular for zero precipitation in the summer months, and for the peaks in the testing period. The results indicate that wavelet—ANN model estimations are significantly superior to those obtained by either a conventional ANN model or a multi linear regression model. In particular, the improvement provided by the new approach in estimating the peak values had a noticeably high positive effect on the performance evaluation criteria. Inclusion of the summed sub-series in the ANN input layer brings a new perspective to the discussions related to the physics involved in the ANN structure.  相似文献   

17.
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

18.
The stable isotopic composition of materials such as glacial ice, tree rings, lake sediments, and speleothems from low-to-mid latitudes contains information about past changes in temperature (T) and precipitation amount (P). However, the transfer functions which link δ18Op to changes in T or P, dδ18Op/dT and dδ18Op/dP, can exhibit significant temporal and spatial variability in these regions. In areas affected by the Southeast Asian monsoon, past variations in δ18O and δD of precipitation have been attributed to variations in monsoon intensity, storm tracks, and/or variations in temperature. Proper interpretation of past δ18Op variations here requires an understanding of these complicated stable isotope systematics. Since temperature and precipitation are positively correlated in China and have opposite effects on δ18Op, it is necessary to determine which of these effects is dominant for a specific region in order to perform even qualitative paleoclimate reconstructions. Here, we evaluate the value of the transfer functions in modern precipitation to more accurately interpret the paleorecord. The strength of these transfer functions in China is investigated using multiple regression analysis of data from 10 sites within the Global Network for Isotopes in Precipitation (GNIP). δ18Op is modeled as a function of both temperature and precipitation. The magnitude and signs of the transfer functions at any given site are closely related to the degree of summer monsoon influence. δ18Op values at sites with intense summer monsoon precipitation are more dependent on the amount of precipitation than on temperature, and therefore exhibit more negative values in the summer. In contrast, δ18Op values at sites that are unaffected by summer monsoon precipitation exhibit strong relationships between δ18Op and temperature. The sites that are near the northern limit of the summer monsoon exhibit dependence on both temperature and amount of precipitation. Comparison with simple linear models (δ18Op as a function of T or P) and a geographic model (δ18Op as a function of latitude and altitude) shows that the multiple regression model is more successful at reproducing δ18Op values at sites that are strongly influenced by the summer monsoon. The fact that the transfer function values are highly spatially variable and closely related to the degree of summer monsoon influence suggests that these values may also vary temporally. Since the Southeast Asian monsoon intensity is known to exhibit large variations on a number of timescales (annual to glacial–interglacial), and the magnitude and sign of the transfer functions is related to monsoon intensity, we suggest that as monsoon intensity changes, the magnitude and possibly even the sign of the transfer functions may vary. Therefore, quantitative paleoclimate reconstructions based on δ18Op variations may not be valid.  相似文献   

19.
20.
This paper presents an evaluation of the spatio-temporal patterns of hydrologic alteration induced by dam construction and precipitation variability in the Lancang River Basin of southwest China from 1957 to 2000. Analyses were conducted using the linear regression method, the Mann–Kendall test, and the Range of Variability Approach. The results indicate that there was considerable variation in the average monthly precipitation between the pre- and post-dam periods in the Lancang River Basin. Second, the magnitude of monthly runoff was strongly related to precipitation, which showed an up-down annual variation, and was significantly altered by dam construction and precipitation variability. In the modified series (hydrologic series with the precipitation impacts removed), runoff deviations between the pre- and post-dam periods became larger. Third, the extreme runoff cycles were influenced by dam construction and precipitation variability downstream from the dam, and the monthly maximum runoff increased from the pre-dam to post-dam period at all hydrologic stations. Fourth, the degree of hydrologic alteration (DHA) indicates that the precipitation variability not only affected the hydrologic regime of unregulated river reach but also modified the negative impacts of dam construction, which could provide a modest mitigation of the hydrologic alterations induced by dam construction, possibly decreasing the level of DHA. Last, the overall degree of hydrologic alteration in the observed series reached 25.2, 25.3, and 29.1 % for the upstream, midstream, and downstream areas, respectively. These results show that the hydrologic regimes of the Lancang River during the 1957–2000 period were affected by damming and precipitation variability, but the hydrologic alteration was relatively low in the upstream areas of the river without a dam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号