首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
渤海潮汐和潮流数值计算   总被引:5,自引:0,他引:5  
本文采用交替方向隐式方法积分二维非线性潮汐方程组,在开边界给定潮汐调和常数,计算渤海域最有代表性的半日分潮M2和全日分潮K1,利用准调和分析方法给出了两个分潮的同潮图和潮流椭圆图,与实测结果比较,计算结果是令人满意,基本上反映了渤海半日潮和全日潮波运动。本文也计算和讨论了潮汐能量平衡和耗散及潮流分布。利用潮汐和风暴潮耦合模式模拟了潮汐和风暴潮的相互作用。  相似文献   

2.
北部湾潮汐潮流的三维数值模拟   总被引:9,自引:1,他引:9  
基于二阶湍流闭合模型计算涡动粘性系数的POM三维水动力模式,采用细网格,考虑6个岛屿、海底摩擦系数进行划片取值,模拟北部湾潮汐潮流.所得潮汐调和常数与81个实测站比较,绝对平均误差:K1分潮振幅为46cm,迟角为9°;O1分潮振幅为56cm,迟角为7°;M2分潮振幅为62cm,迟角为15°.由模拟结果分析出该海区潮汐、潮流、余水位和潮余流,以及水平速度垂直分布等特征.  相似文献   

3.
湛江近海M2分潮的数值模拟   总被引:1,自引:0,他引:1  
利用潮汐模型,在高分辨率的自适应曲线网格下,采用潮汐调和常数作为控制模拟精度的方法,模拟了洪江附近海域M2分潮的运动特征。模拟所得的潮汐调和常数同实测值相比,误差较小。根据模拟结果绘制的M2分潮的同潮图,揭示了湛江附近海域M2分潮振幅和迟角的分布特征以及M2分潮的传播和发展规律。模拟得到的M2分潮分别在涨憩、落憩、涨急和落急几个典型时刻的流场,揭示了湛江附近海域M2分潮潮流的分布特征及其运动规律。  相似文献   

4.
为评估DTU10、TPXO8、GOT00.2和NAO.99b 4个全球大洋潮汐模式对北印度洋潮汐的预报能力,采用英国海洋资料中心提供的海区中部和沿岸站潮汐调和常数资料,检验了这些模式4个主要分潮(M_2、S_2、K_1、O_1)的准确度。它们的各分潮调和常数资料准确度都比较高,振幅绝均差的最大值仅5.61 cm,迟角绝均差的最大值仅9.13°。这些模式的调和常数给出潮波传播特征差别不大。基于这些模式提供的调和常数,分别建立了北印度洋4、8和16分潮潮汐预报模型,将预报结果与中国海事服务网提供的沿岸24个站潮汐表资料进行对比。各模式的8分潮(M_2、S_2、N_2、K_2、K_1、O_1、P_1、Q_1)潮汐预报模型均优于4分潮(M_2、S_2、K_1、O_1)潮汐预报模型,NAO.99b模式可以提供16分潮(M_2、S_2、N_2、K_2、K_1、O_1、P_1、Q_1、MU_2、NU_2、T_2、L_2、2N_2、J_1、M1、OO_1)潮汐预报模型,但是对预报结果改善不明显;在各模式中,GOT00.2模式的8分潮潮汐预报模型对北印度洋沿岸的预报效果最好,平均绝均差为14.97 cm。  相似文献   

5.
利用T/P 卫星高度计资料调和分析南海潮汐信息   总被引:3,自引:0,他引:3  
利用j,v模型调和分析1992~2002年共10 a的TOPEX/Poseidon(T/P)海面高度距平资料,提取了南海K1,O1,P1,Q1,M2,S2,N2和K2等8个主要分潮的潮汐调和常数。分析比较了卫星上下行轨道的19个交叉点的振幅和迟角,其中M2,S2,K1和O1的平均向量均方根偏差分别是1.5,1.1,2.5和1.4 cm;将交叉点的调和常数与TPXO7.2模式的结果进行了比较,结果表明M2,S2,K1和O1分潮振幅的绝对平均误差均小于3 cm,迟角的最大绝对平均误差为7.8°。选取了与卫星轨道较近的8个验潮站,对验潮站的实测数据调和常数和本文所得调和常数进行了比较,结果显示K1分潮的向量均方根偏差为4.7 cm,M2分潮的向量均方根偏差为3.7 cm。论文结果表明利用j,v模型调和分析方法对南海海域卫星高度计资料进行潮汐信息提取是可靠的,并可为局部重力场的研究提供海洋潮汐改正数据,有一定的参考价值。  相似文献   

6.
随着卫星高度计资料的不断丰富,通过对卫星高度计所得潮汐调和常数进行插值或拟合得到潮汐同潮图成为可能。本文拟对T/P(TOPEX/POSEIDON)、Jason-1和Jason-2卫星高度计数据进行分析,得到南海区域星下观测点处四个主要分潮(M2、S2、K1和O1分潮)的调和常数,进而利用双调和样条插值方法对其进行插值,获取南海同潮图。首先,以1992~2016年T/P和Jason卫星高度计所得海面高度数据为基础,利用调和分析方法计算了南海星下观测点处M2、S2、K1和O1四个主要分潮的调和常数,并与40个验潮站数据进行了对比,最大矢量均差为4.99cm,说明分析所得调和常数与利用验潮站资料提取的调和常数的误差较小。进而采用双调和样条插值方法对星下点调和常数进行插值,得到了南海四个主要分潮的同潮图,所得结果与全球潮汐模型TPXO7.2模式结果的矢量均差分别为4.69、2.46、3.13和2.42 cm,与141个验潮站处观测结果的矢量均差分别为22.59、10.26、10.24和8.51 cm。此外,插值所得四个主要分潮的无潮点位置与前人研究结果相近。上述实验结果表明:利用双调和样条插值方法对卫星高度计所得调和常数进行插值能够获取较为准确的同潮图。  相似文献   

7.
杭州湾和钱塘江潮波的联合数值模型   总被引:6,自引:2,他引:6       下载免费PDF全文
曹德明  方国洪 《海洋学报》1988,10(5):521-530
本文应用有限差分法,对杭州湾采用二维模型,对钱塘江采用一维模型进行了潮波联合数值计算,得到了全日((O1+K1)/2)、半日(M2)和浅水(M4)分潮的调和常数,计算结果比单纯的二维模型结果更符合杭州湾潮汐潮流的实际情况,并得出了关于余水位和余流的更可信的结果。  相似文献   

8.
南海潮汐的伴随同化数值模拟   总被引:21,自引:2,他引:21       下载免费PDF全文
把利用正交潮响应方法对 2 4 8个周期超过 6年的南中国海的TOPEX/Poseidon卫星高度计资料进行潮波分析提取的沿轨分潮调和常数同化到二维非线性潮汐数值模式中去 ,优化模型中的开边界条件和底摩擦系数 ,模拟了南海m1 和M2 分潮的潮汐。所用的同化方法是伴随同化。根据计算结果给出了m1 和M2 分潮的同潮图。计算结果与 5 9个验潮站资料的比较结果是 :m1 分潮的振幅和迟角的平均绝对误差分别是 4.8cm和 8.7°;M2 分潮的振幅和迟角的平均绝对误差分别是 4.3cm和 1 1 .0°,表明计算结果与验潮站资料符合良好。研究结果表明 ,利用伴随同化方法把TOPEX/Poseidon资料同化到潮汐数值模式中去对模式进行校正是有效的  相似文献   

9.
用 T_TIDE 潮汐分析工具对青岛港口2019 年1—12 月逐时潮高资料进行不同时段的调和分析,计算其调和常数,并总结该港口潮汐特征。从 2019 年全年的调和分析结果中选择不同分潮建立调和预报模型,对2019 年1 月的潮高进行预测,通过相对误差、判定系数结果分析,确定最优调和预报模型。结果表明:青岛港口为正规半日潮港,以太阴主要半日分潮 M2分潮为主,其次为太阳主要半日分潮 S2 、太阴主要椭率半日分潮 N2 、太阴-太阳赤纬全日分潮 K1和太阴赤纬全日分潮 O1等分潮;对比不同时间长度的分潮振幅及平均海平面,可知其与用于调和分析的潮位资料长度几乎无关。分潮由5 个增加至24 个可明显改进预报效果,再增加几乎没有改进,故选用24 个分潮为最优的调和预报模型。为验证模型具有良好的实用性,对五号码头的实测潮汐数据进行分析预报,进而可知建立的模型能够较好地预报青岛港附近海域的潮汐变化。  相似文献   

10.
对我国近海厦门、大连、北海、连云港、坎门、汕尾、东方、海口、香港北角、名濑、那霸、吕四、闸坡、石臼所共14个验潮站多年潮汐资料进行了分析。对1 a调和分析结果中的8个分潮(Q1,O1,P1,K1,N2,M2,S2,K2)进一步进行了分离,得到各分潮的调和常数,并和1 a潮汐调和分析中的假定值进行了比较。结果表明,有些分潮存在较大误差。用19 a分析所得的调和常数代替传统1 a分析的假定值,能够提高潮汐分析和预报精度,减小误差。  相似文献   

11.
应用MIKE数值模拟软件,采用无结构三角形网格,建立一套计算区域包括整个渤海、黄海、东海以及东海大陆架和琉球群岛的高分辨率数值模型,考虑了实际水深和岸线,外海开边界采用西北太平洋大模型结果的潮位提供,模拟了东中国海潮波的波动过程,对潮波垂直运动过程进行调和分析,得到了渤海、黄海、东海的M2,S2,K1,O1以及N2,K2,P1,Q1八个主要分潮的传播和分布特征。利用中国沿海14个潮位站的调和常数对模型结果进行了验证,验证结果显示模型较为准确可靠。研究结果表明:4个主要半日潮(全日潮)在渤、黄、东海的传播情形基本相似,即潮波在渤海、黄海、东海沿岸的传播性质上类似沿岸开尔文波的传播形态,并且成功再现了计算海域的4个半日分潮无潮点和2个全日分潮无潮点。全日潮振幅各无潮点附近振幅最小,而海湾的波腹区振幅最大,东海潮差呈现近岸方向振幅大、离岸方向振幅小,浙闽沿海振幅也较大,黄海振幅相对较小,渤海振幅在辽东湾和渤海湾顶最大,两个无潮点周边振幅较小。  相似文献   

12.
By use of the hydrodynamic model,the harmonic constants of 8 principal tidal constituents(Q_1,O_1,P_1,K_1,N_2,M_2,S_2andK_2)are obtained for the East China Sea,and the harmonic constant ofS_a is calculated by two-dimensional interpolation.The calculated results agree well with the observed dataaround the sea.The harmonic constants can be used to predict the tide in the East China Sea.The cotidalcharts of the 9 tidal constituents reveal their distribution.  相似文献   

13.
渤海、黄海、东海M2潮汐潮流的三维数值模拟   总被引:23,自引:2,他引:21  
利用建立的一种新的半隐半显三维数值格式,将渤海、黄海、东海作为一个整体,采用球面坐标系下的三维潮波方程组,考虑了引潮力的作用,数值模拟了渤海、黄海、东海的M2分潮的潮汐与潮流,结果较好地体现了渤海、黄海、东海M2分潮的特征.通过比较65个验潮站的实测值与计算值,所得计算结果的振幅差平均为6.4cm,相角差为6.1°,计算与实测符合良好.本文给出的问潮图与Fang于1986年给出的实测占数值综合结果基本一致.对选取的47个测流站,比较了各层潮流调和常数Ucosζ、Usinζ、Vcosη、Vsinη的计算值与实测值的偏差,偏差绝对值的平均在2.6~4.9cm/s之间.并比较分析了潮流的垂直结构,所得结果与实测符合较好.首次揭示出回流点的水平位置不随深度变化这一特性.最后给出了M2分潮的潮能消耗.  相似文献   

14.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

15.
基于非结构三角形网格的FVCOM(finite-volume coastal ocean model )数值模型, 对南海北部海域的潮汐、潮流进行了精细化数值模拟研究, 并根据模拟结果详细分析了M2, S2, K1, O1 分潮的潮汐和潮流特征。研究结果表明: 神泉港到甲子港海域表现为正规全日潮性质, 珠江口附近海区潮汐以不正规半日潮为主, 其他海域主要表现为不规则全日潮; 陆架海域和深水海域主要表现为往复流, 陆架坡折区存在较强的旋转流, 陆架坡折区为不规则半日潮流和不规则全日潮流的分界线; 东沙群岛附近海域以不规则全日潮流为主, 旋转方向为顺时针; 整个海域的最大流速分布与等深线基本平行, 东沙群岛附近速度明显变大, 最大值出现在台湾浅滩附近, 最大值超过70 cm/s; 南海潮波系统以巴士海峡传入的大洋潮波为主, 分为三支潮流, 以不同的形式进出南海北部海域; 余流在台湾浅滩附近达到最大, 超过6 cm/s, 自南向北进入台湾海峡, 近岸余流自东向西沿岸流动。本研究在东沙群岛周边的模拟结果与前人基于实测资料的分析吻合较好, 并且由于采用了高精度的三角网格, 本文对东沙群岛周边海域的潮汐潮流结构和性质的刻画和分析是迄今为止较为精细的, 同时本研究还提高了对沿岸验潮站调和常数的模拟精度。  相似文献   

16.
南海北部陆架陆坡区海流观测研究   总被引:3,自引:0,他引:3  
针对2006-2009年期间,南海北部陆架陆坡区3个站ADCP海流连续观测资料,采用功率谱分析、潮流调和分析方法,重点分析了陆架陆坡区100 m,200 m和1 200 m水深海域海流的垂向结构,探讨了环流的季节变化和空间分布特征,特别讨论了南海暖流和北陆坡流的时空变化特征。结果表明,陆架陆坡区潮流类型属于不规则日潮,深水站点中层表现为正规全日潮类型,垂向为"三层结构",甚至更加复杂。O1,K1,M2,S2等分潮总体上为顺时针旋转,在深水站点,基本表现为西北-东南走向的往复流形态。从能量角度看,表层和底层海流中,潮流所占份额较大,分别占30%~40%和40%~50%,中层较小,约为20%。对东沙群岛西南陆架陆坡区环流,观测计算结果证实了西向强流的存在,且垂向结构具有显著的季节变化,在200 m水深处没有明显的南海暖流,只是10~30 m以上层次存在逆风海流。海南岛以东海域连续15个月表层环流的结果表明,冬季明显受到南海暖流的影响,存在东北向的逆风海流,夏秋季的环流表现为西南向,流速较强,夏季也存在逆风情况,造成上述情形的原因可能是该地南海暖流的流轴具有季节性变化——冬季偏南,夏季偏北。  相似文献   

17.
A combination of a three-dimensional hydrodynamic model and in-situ measurements provides the structures of barotropic tides, tidal circulation and their relationship with turbulent mixing in the Java Sea, which allow us to understand the impact of the tides on material distribution. The model retains high horizontal and vertical resolutions and is forced by the boundary conditions taken from a global model. The measurements are composed of the sea level at coastal stations and currents at moorings embedded in Seawatch buoys, in addition to hydrographic data. The simulated tidal elevations are in good agreement with the data for the K1 and M2 constituents. The K1 tide clearly shows the lowest mode resonance in the Java Sea with intensification around the nodal point in the central region. The M2 tide is secondary and propagates westward from the eastern open boundary, along with a counterclockwise amphidromic point in the western part. The K1 tide produces a major component of tidal energy, which flows westward and dissipates through the node region near the Karimata Strait. Meanwhile, the M2 tide dissipates in the entire Java Sea. However, the residual currents are mainly induced by the M2 tide, which flows westward following the M2 tidal wave propagation. The tidal mixing is mainly caused by K1 tide which peaks at the central region and is consistent with the uniform temperature and salinity along the vertical dimension. This mixing is expected to play an important role in the vertical exchange of nutrients and control of biological productivity.  相似文献   

18.
三门湾外海的潮汐和潮流特征   总被引:1,自引:0,他引:1  
针对2009年5月-7月三门湾外海D8和D9两个站位布放的防渔网底拖锚系ADCP连续观测获取的流速资料和水位资料,采用调和分析和功率谱分析等研究方法,分析了该海域的潮汐和潮流特征,结果显示:该海域潮汐类型为正规半日潮,近岸的D9站浅水分潮比离岸的D8站显著,潮汐呈现出回归潮特征。三门湾外海潮流半日分潮能量最大, 各层潮流呈现出旋转流性质;椭圆率随水深增加;M2K1分潮流最大流速均在次表层最大;最大分潮流速发生时刻底层比中、上层提前约半小时;该海域潮流的半日分潮流以正压为主,全日分潮流则表现出较为明显的斜压性。  相似文献   

19.
渤黄东海潮能通量与潮能耗散   总被引:7,自引:0,他引:7  
利用同化高度计资料和沿岸验潮站资料对潮汐数值模式进行同化,根据同化后的数值模式结果,对渤黄东海中的潮能通量和潮能耗散进行了研究.M2分潮从太平洋进入渤黄东海的潮能为122.499GW,占4个主要分潮进入总量的79%.黄海是半日分潮潮能耗散的主要海区.全日分潮则主要耗散在东海.全日分潮在遇到陆坡的阻挡以后有一部分潮能沿着冲绳海槽向西南传播,并有一部分潮能反射回太平洋,其中O1分潮通过C3断面反射回太平洋的潮能,约占其传入东海潮能的44%.  相似文献   

20.
利用二维非线性潮波方程组,讨论了渤黄海主要分潮(全日潮、半日潮及浅水分潮) 数值模拟中的有关问题。数值模拟中同时考虑了4个主要分潮(M2,S2,K1,O1)和两个浅水分潮(M4,MS4)。分析表明,在渤黄海潮波系统数值模拟中,稳定后选取14 d的数值模拟结果进行调和分析能够取得最佳(最合理)的调和分析结果。计算出调和常数的模拟值与实测值之差的绝对平均值:M2分潮的振幅差为4cm,迟角差为3.3°,S2分潮的振幅差为2cm,迟角差为4.2°,K1 分潮的振幅差为1cm,迟角差为3.7°,O1分潮的振幅差为2 cm,迟角差为5.5°。实验结果较好地体现了渤黄海潮波系统的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号