首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the bathymetry simulation indicate the emplacement of the Mesozoic Arctic plume into the lithosphere of the Alpha-Mendeleev and Lomonosov ridges. The study also presents a model of the thermal subsidence to the asthenosphere. The calculated coefficients are compared with those obtained for the Greenland-Iceland and Iceland-Faeroe ridges, which were formed in response to hotspot activity. It was shown that the coefficients of the thermal subsidence in the central part of the Alpha-Mendeleev and Lomonosov Ridges are similar to those calculated for the Greenland-Iceland and Iceland-Faeroe ridges. This indicates the thermal regime of the subsidence of the Alpha-Mendeleev and Lomonosov ridges since the Early Miocene and the increased influence of the Arctic plume on the ridge genesis. The ridges are interpreted to have formed over a broad geological timeframe, from the late Cretaceous to the Cenozoic. A geothermal method, which is highly informative in terms of the age of the lithosphere, provides better constraints on the timing of ridge formation. The age estimates for the Alpha-Mendeleev (97–79 Ma) and Lomonosov ridges (69–57 Ma) derived from the geothermal data allowed us to draw a convincing conclusion about the genesis of these ridges.  相似文献   

2.
An analysis of the geothermal data on the World Ocean, including those obtained by the author from research vessels of the Russian Academy of Sciences, shows that the heat flow depends on the petrological composition of the oceanic lithosphere. Mean heat flow values are observed in the regions with a lherzolite lithosphere (300–500 mW/m2 depending on the age of the floor). The regions where the lithosphere contains harzburgite enriched with olivine are characterized by high heat flow values, while those with a lithosphere with an average mineral composition feature minimal heat flow values (~20–30% of the average heat flow). The intermediate contents of olivine correspond to intermediate heat flow values. Based on the calculations performed and on a combined analysis of the thermal and physical parameters of the mantle rocks of the ocean, we inferred that the dependence of the heat flow values on the petrological composition of the lithosphere is valid for marginal basins as well, including basins characterized by diffuse spreading. The results of the geothermal studies in the Tyrrhenian Sea, whose central part is formed due to diffuse spreading, indicate that, in the region of the Vavilov Seamount, the lithosphere is composed of rocks with a lherzolite composition, while the lithosphere in the region of the Marsili Seamount consists of harzburgites of an average mineral composition.  相似文献   

3.
Keeton  J. A.  Searle  R. C.  Peirce  C.  Parsons  B.  White  R. S.  Sinha  M. C.  Murton  B. J.  Parson  L. M. 《Marine Geophysical Researches》1997,19(1):55-64
We present a series of 1:200,000 scale maps of the bathymetry of the Reykjanes Ridge. The data are divided into four maps, extending 630 km along the ridge axis and between 30 and 100 km off-axis. This compilation of bathymetry data is extremely detailed, gridded at approximately 100 m resolution, and with almost no gaps. The Reykjanes Ridge is one of the best examples of a hotspot-dominated ridge, whose characteristics are influenced by its proximity to the Iceland plume. Many fundamental questions may be addressed at the Reykjanes Ridge, which is why the BRIDGE programme identified it as one of its four regional projects. These maps represent a BRIDGE contribution to the general scientific community.  相似文献   

4.
Two main events determined the formation, geological history, magmatism, and geodynamics of the Jan Mayen microcontinent: (1) drift of this segment of the Laurasian plate over the Iceland plume in the Early Paleogene; (2) propagation of the rift zone of the mid-Atlantic Ridge into this region and separation of the Jan Mayen lithospheric block from northeastern Greenland. The lithosphere was reduced at the block boundary when it was separated. This process was accompanied by the formation of depressions intruded by magma of the Iceland plume, which resulted in the appearance of a new volcanic center with active volcanoes of the central type. They supplied pyroclastic material to the sedimentary cover of the expanding Norwegian?Greenland Basin in the Eocene and Oligocene. The wedging of the Jan Mayen plate (microcontinent) into the triple junction of the plates (Greenland, Eurasian, Jan Mayen) promoted intense volcanism and the formation of two large volcanic complexes: (1) the Greenland?Faroes and the (2) Trail?Vøring. Recent volcanoes of the Jan Mayen hot spot are fed by magma from the Iceland plume as well as from relict and newly formed cambers in a zone of deep-seated Jan Mayen transform faults.  相似文献   

5.
琼东南盆地深水区构造热演化特征及其影响因素分析   总被引:5,自引:1,他引:4  
To reveal the tectonic thermal evolution and influence factors on the present heat flow distribution, based on 154 heat flow data, the present heat flow distribution features of the main tectonic units are first analyzed in detail, then the tectonic thermal evolution histories of 20 profiles are reestablished crossing the main deep-water sags with a structural, thermal and sedimentary coupled numerical model. On the basis of the present geothermal features, the Qiongdongnan Basin could be divided into three regions: the northern shelf and upper slope region with a heat flow of 50–70 m W/m2, most of the central depression zone of 70–85 m W/m2, and a NE trending high heat flow zone of 85–105 m W/m2 lying in the eastern basin. Numerical modeling shows that during the syn-rift phase, the heat flow increases generally with time, and is higher in basement high area than in its adjacent sags. At the end of the syn-rift phase, the heat flow in the deepwater sags was in a range of 60–85 m W/m2, while in the basement high area, it was in a range of 75–100 m W/m2. During the post-rift phase, the heat flow decreased gradually, and tended to be more uniform in the basement highs and sags. However, an extensive magmatism, which equivalently happened at around 5 Ma, has greatly increased the heat flow values, and the relict heat still contributes about 10–25 m W/m2 to the present surface heat flow in the central depression zone and the southern uplift zone. Further analyses suggested that the present high heat flow in the deep-water Qiongdongnan Basin is a combined result of the thermal anomaly in the upper mantle, highly thinning of the lithosphere, and the recent extensive magmatism. Other secondary factors might have affected the heat flow distribution features in some local regions. These factors include basement and seafloor topography, sediment heat generation, thermal blanketing, local magmatic injecting and hydrothermal activities related to faulting and overpressure.  相似文献   

6.
Samples from the active Reykjanes Ridge and the inactive Iceland—Faroes Ridge have been investigated sedimentologically, mineralogically, and geochemically. The sediments display polymodal grain-size distributions and are poorly sorted, indicating deposition by various mechanisms and contributions from numerous sources. The mineralogy is fairly typical for the region and strongly reflects the large input of volcanic ash and ice-rafted material.Bulk chemical analyses indicate that the Reykjanes Ridge sediments appear to be enriched in Fe, Mn, Cu, Cr, and Zn as has been reported for other active ridges while the inactive Iceland—Faroes Ridge does not display such enrichments. The enriched metals in the ridge sediments do not show a particular affinity for any one size class. Partition studies indicate that the enriched Fe and Mn are held in separate phases while the other metals are present in all phases. Adsorption is not a major concentrating mechanism for the enhanced elements.Li distributions are apparently unaffected by active ridges and Pb seems to be partially concentrated biologically. There are indications that other criteria must be used in conjunction with bulk chemical analyses, in order to establish the presence of active ridge metal contributions.  相似文献   

7.
Two dimensional crustal models derived from four different ocean bottom seismographic (OBS) surveys have been compiled into a 1,580 km long transect across the North Atlantic, from the Norwegian Møre coast, across the extinct Aegir Ridge, the continental Jan Mayen Ridge, the presently active Kolbeinsey Ridge north of Iceland, into Scoresby Sund in East Greenland. Backstripping of the transect suggests that the continental break-up at ca. 55 Ma occurred along a west-dipping detachment localized near the western end of a ca. 300 km wide basin thinned to less than 20 km crustal thickness. It is likely that an east-dipping detachment near the present day Liverpool Land Escarpment was active during the late stages of continental rifting. A lower crustal high-velocity layer (7.2–7.4 km/s) interpreted as mafic intrusions/underplating, was present beneath the entire basin. The observations are consistent with the plume hypothesis, involving the Early Tertiary arrival of a mantle plume beneath central Greenland and focused decompression melting beneath the thinnest portions of the lithosphere. The mid-Eocene to Oligocene continental extension in East Greenland is interpreted as fairly symmetric and strongly concentrated in the lower crustal layer. Continental break-up which rifted off the Jan Mayen Ridge, occurred at ca. 25 Ma, when the Aegir Ridge became extinct. The first ca. 2 m.y. of oceanic accretion along the Kolbeinsey Ridge was characterized by thin magmatic crust (ca. 5.5 km), whereas the oceanic crustal formation since ca. 23 Ma documents ca. 8 km thick crust and high magma budget.  相似文献   

8.
The relationship between the magnetic anomalies over Iceland and those over Reykjanes Ridge is investigated using the data of the 1965 Dominion Observatory survey. A method is developed for determining the two-dimensionality of the anomalies from the component data measured in this survey. This method is based on testing the first and the second derivative of the magnetic potential with respect to the direction of two-dimensionality, using the component data along a single flight line. Testing the first derivative also yields the direction of two-dimensionality. The outcomes of the two tests (based on a single line) are compared with the observed two-dimensionality (established by narrowly spaced earlier surveys) of Reykjanes Ridge, showing good agreement. As the outcomes of the two tests provide complementary information they are combined into a single factor: A. This factor of two-dimensionality is very low for the anomalies over the shelf of Iceland indicating that the anomalies over Iceland cannot be continued directly into those over Reykjanes Ridge. Over Iceland A is generally low. Over the neovolcanic zone in eastern Iceland twodimensionality is associated with long wavelengths that are not present in the spectrum of the anomalies over Reykjanes Ridge. Thus, Reykjanes Ridge-type anomalies are absent with the exception of the central anomaly. This may not be used as evidence against crustal spreading since the kinematic model proposed by Pálmason for Iceland has a wide transition zone between rock of opposite polarity. The same model if computed for a mid-ocean ridge has narrow transition zones. The larger width of the transition zone blurs the anomalies related to the reversals of the earth magnetic field.  相似文献   

9.
Immediately southwest of Iceland, the Reykjanes Ridge consists of a series ofen échelon, elongate ridges superposed on an elevated, smooth plateau. We have interpreted a detailed magnetic study of the portion of the Reykjanes Ridge between 63°00N and 63°40N on the Icelandic insular shelf. Because the seafloor is very shallow in our survey area (100–500 m), the surface magnetic survey is equivalent to a high-sensitivity, nearbottom experiment using a deep-towed magnetometer. We have performed two-dimensional inversions of the magnetic data along profiles perpendicular to the volcanic ridges. The inversions, which yield the magnetization distribution responsible for the observed magnetic field, allow us to locate the zones of most recent volcanism and to measure spreading rates accurately. We estimate the average half spreading rate over the last 0.72 m.y. to have been 10 mm/yr within the survey area. The two-dimensional inversions allow us also to measure polarity transition widths, which provide an indirect measure of the width of the zone of crustal accretion. We find a mean transition width on the order of 4.5±1.6 km. The observed range of transition widths (2 to 8.4 km) and their mean value are characteristic of slow-spreading centers, where the locus of crustal accretion may be prone to lateral shifts depending on the availability of magmatic sources. These results suggest that, despite the unique volcanotectonic setting of the Reykjanes Ridge, the scale at which crustal accretion occurs along it may be similar to that at which it occurs along other slow-spreading centers. The polarity transition width measurements suggest a zone of crustal accretion 4–9 km wide. This value is consistent with the observed width of volcanic systems of the Reykjanes Peninsula. The magnetization amplitudes inferred from our inversions are in general agreement with NRM intensity values of dredge samples measured by De Boer (1975) and ourselves. Our thermomagnetic measurements do not support the hypothesis that the low amplitude of magnetic anomalies near Iceland is the result of a high oxidation state of the basalts. We suggest that the observed reduction in magnetic anomaly amplitude toward Iceland may be the result of an increase in the size of pillows and other igneous units.  相似文献   

10.
Heat flow was measured on the Lomonosov Ridge during the 5th Chinese National Arctic Expedition in 2012. To derive the time-temperature curve, resistivity data were transformed to temperature by the resistivity- temperature program. Direct reading and linear regression methods were used to calculate the equilibrium temperature, which were regressed against the depth of the probes in sediment to derive the geothermal gradient. Then, heat flow was calculated as the product of geothermal gradient and thermal conductivity of sediments. The heat flow values on the basis of the two methods were similar (i.e., 67.27 mW/m2 and 63.99 mW/m2, respectively). The results are consistent with the measurements carried out at adjacent sites. The age of the Lomonosov Ridge predicted by the heat flow-age model was 62 Ma, which is in accordance with the inference that the ridge was separated from Eurasia at about 60 Ma.  相似文献   

11.
Between June 2004 and September 2004 a temporary seismic network was installed on the northern insular shelf of Iceland and onshore in north Iceland. The seismic setup aimed at resolving the subsurface structure and, thus, the geodynamical transition from Icelandic crust to typical oceanic crust along Kolbeinsey Ridge. The experiment recorded about 1,000 earthquakes. The region encloses the Tjörnes Fracture Zone containing the Husavik–Flatey strike-slip fault and the extensional seismic Grimsey Lineament. Most of the seismicity occurs in swarms offshore. Preliminary results reveal typical mid-ocean crust north of Grimsey and a heterogeneous structure with major velocity anomalies along the seismic lineaments and north–south trending subsurface features. Complementary bathymetric mapping highlight numerous extrusion features along the Grimsey Lineament and Kolbeinsey Ridge. The seismic dataset promises to deliver new insights into the tectonic framework for earthquakes in an extensional transform zone along the global mid-ocean ridge system.  相似文献   

12.
A detailed heat flow study of some areas in the Middle America Trench is attempted. Forty six measurements were obtained in the region between the Tres Marias Islands and the Tehuantepec Ridge. The stations were concentrated in three detailed survey areas and 4 profiles. The obtained data show a steep decrease in the heat flow values towards the southern portion of the trench. The detailed survey area, located in the northern end of the trench (Area 20–1) has the highest heat flow average (122 mW m-2), however a characteristical pattern was observed: most data within the Rivera Plate have higher than average heat flow due to the young age of this plate and contrast with the low values associated with the continental lithosphere of the North America Plate. Areas 20–3 and 20–4 have lower averages (50 and 27 mW m-2 respectively) and they coincide with portions of the Guadalupe Plate, proposed by Klitgord and Mammerickx (1982) and assumed to be older than the Cocos Plate, though magnetic lineations have not been directly correlated with age in those areas.  相似文献   

13.
Magnetic anomalies over Iceland, measured by Serson et al. (1968), are similar in shape and amplitude to those found over mid-oceanic ridges in general and over Reykjanes Ridge in particular. However, the geology of Iceland does not favour the simple model of sea floor spreading as formulated by Vine and Matthews. The Brunhes period volcanism can neither in place nor in time be related to an opening process of the Central Graben, which actually is a downthrown block and not an opening rift. Furthermore, the structure of Iceland is not symmetric with respect to the Central Graben. The geology of the Central Graben of Iceland does support a model proposed by Thorleifur Einarsson in 1967. In this model elongate ridges of pillow lavas are thought to have piled up on top of parallel volcanic fissures. The actual spreading is negligible. The fissures have been opening at random over a width of about 120 km, and no definite time scale can be set up for the associated magnetic anomalies. This conflict between Icelandic geology and the current views on sea floor spreading, can be evaded by supposing that the mere circumstance that Iceland is an island obscures a spreading process underneath. One might also postulate that Iceland nevertheless should stand as an example of a mid-oceanic ridge which implies that our ideas on sea floor spreading should be thoroughly revised.  相似文献   

14.
The Dongpu depression is located in the southern Bohai Bay Basin, North China, and it has abundant oil and gas reserves. There has been no systematic documentation of this depression's temperature field and thermal history. In this article, the present geothermal gradient and heat flow were calculated for 68 wells on the basis of 892 formation-testing data from 523 wells. Moreover, the Cenozoic thermal history was reconstructed using 466 vitrinite reflectance data from 105 wells. The results show that the Dongpu depression is characterized by a medium-temperature field between stable and active tectonic areas, with an average geothermal gradient of 34.8 °C/km and an average heat flow of 66.8 mW/m2. The temperature field in the Dongpu depression is significantly controlled by the Changyuan, Huanghe, and Lanliao basement faults and thin lithosphere thickness. The geothermal gradient twice experienced high peaks. One peak was during the Shahejie 3 Formation depositional period, ranging from 45 °C/km to 48 °C/km, and the second peak was in the middle and late of the Dongying Formation depositional period, ranging from 39 °C/km to 40 °C/km, revealing that the Dongpu depression experienced two strong tectonic rifts during the geothermal gradient high peak periods. The geothermal gradient began to decrease from the Neogene, and the geothermal gradient is 31–34 °C/km at the present day. In addition, these results reveal that source rock thermal evolution is controlled by the paleo temperature field of the Dongying Formation depositional period in the Dongpu depression. This study may provide a geothermal basis for deep oil and gas resource evaluation in the Dongpu depression.  相似文献   

15.
In most of the studies devoted to the analysis of the thermal regime of the Black Sea basins, the high sedimentation rate is regarded to be the principal reason for the low values of the surface heat flow as compared to the deep flow. We used the basin modeling technique for a more detailed assessment of this issue with regard to the new geological and geophysical data on the age and structure of the sedimentary cover and basement of the Black Sea basins. The use of enhanced seismic data, together with a more accurate estimation of the age limits of the sedimentary sequences in the region, allowed us to refine the results of the previous studies. Based on the calculations performed for an actual cross section with actual properties of the sedimentary rocks under compaction and the basement rocks, it is shown that any version of the sedimentation and evolution of the basin compatible with the geological and geophysical data available lead to heat flow values that are significantly greater than those actually observed. Our analysis proves that the sedimentation alone, as was implied in the previous studies, cannot explain the decrease in the deep heat flow at the floor surface down to values of about 34 mW/m2. It is shown that the temperature influence of the invasion of dense though heated waters of the Mediterranean Sea that occurred about 7000 years ago helps one to explain the low present-day heat flow values in the deep-water parts of the Western and Eastern basins of the Black Sea. The application of the basin modeling technique allowed us to pose a version of the thermal evolution of the lithosphere in the Western basin of the Black Sea compatible with the high heat flow at the end of the Cretaceous, with three stages of subsidence of the sea floor down to its present-day depths, and with the low heat flow values measured in the basin. According to the geophysical data, this version implies a relatively high-temperature present-day thermal regime in the basin’s lithosphere with a lithosphere thickness of about 60 km.  相似文献   

16.
The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500–600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene–Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.  相似文献   

17.
The Pearl River Mouth Basin (PRMB) and Qiongdongnan Basin (QDNB) are oil and gas bearing basins in the northern margin of the South China Sea (SCS). Geothermal survey is an important tool in petroleum exploration. A large data set comprised of 199 thermal conductivities, 40 radioactive heat productions, 543 measured geothermal gradient values, and 224 heat flow values has been obtained from the two basins. However, the measured geothermal gradient data originated from diverse depth range make spatial comparison a challenging task. Taking into account the variation of conductivity and heat production of rocks, we use a “uniform geothermal gradient” to characterize the geothermal gradient distribution of the PRMB and QDNB. Results show that, in the depth interval of 0–5 km, the “uniform geothermal gradient” in the PRMB varies from 17.8 °C/km to 50.2 °C/km, with an average of 32.1 ± 6.0 °C/km. In comparison, the QDNB has an average “uniform geothermal gradient” of 31.9 ± 5.6 °C/km and a range between 19.7 °C/km and 39.5 °C/km. Heat flows in the PRMB and QDNB are 71.3 ± 13.5 mW/m2 and 72.9 ± 14.2 mW/m2, respectively. The heat flow and geothermal gradient of the PRMB and QDNB tend to increase from the continental shelf to continental slope owing to the lithosphereic/crustal thinning in the Cenozoic.  相似文献   

18.
Particular features of the tectonic structure and anomalous distribution of the geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, the ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. The age of the South Okhotsk Basin is confirmed by the data on the kinematics and corresponds to a 50-km thickness of the lithosphere. This is in accordance with the thickness value obtained by magnetotelluric soundings. A comparative analysis of the model geothermal background and the measured heat flow values on the Akademii Nauk Rise is performed. The analysis points to an abnormally high (by approximately 20%) measured heat flow, which agrees with the high negative gradient of gravity anomalies. The estimates of the deep heat flow and the basement age of the riftogenic basins in the Sea of Okhotsk were carried out in the following areas: the Deryugin Basin (18 Ma, Early Miocene), the TINRO Basin (12 Ma, Middle Miocene), and the West Kamchatka Basin (23 Ma, Late Oligocene). The temperatures at the boundaries of the main lithological complexes of the sedimentary cover are calculated and the zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data, a kinematic model of the region of the Sea of Okhotsk for a period of 36 Ma was calculated and constructed.  相似文献   

19.
On 21 May 1989, a major earthquake swarm on the Reykjanes Ridge at59°44 N, 29°32 W at a water depth of about 1000 m andabout 500 km southwest of Iceland was detected on both the WorldwideStandard Seismic Network (WWSSN) and Icelandic seismic networks. As part ofa multi-institutional response to this swarm, the Naval ResearchLaboratory arranged for a P3 Orion Aircraft to deploy sonobuoys and AXBTs inthe immediate vicinity of the swarm activity. The detection of the swarmmotivated a survey of the region in 1990, using the towed SeaMARC IIside-looking sonar system. In 1990–1991 the Russian ShirshovInstitute of Oceanology offered the use of its MIR deep-divingsubmersibles to investigate the rise axis for recent volcanism. During 1992,a scientific team comprised of five US and ten Russian scientists mobilizedthe twin, deep diving Russian submersibles to study the spreading axis ofthe Reykjanes Ridge. The resulting data analyses allows us to conclude thatthe 1989 seismic swarm event occurred adjacent to and east of the largeaxial high in the center of our survey area. The length, width and depthrange of the earthquakes were very similar to major seismic swarm eventsconfined to fissure systems in the Krafla region of Iceland. It is likelythat the earthquake swarm was located on a fresh, well-defined systemof fissures and faults extending south of the northernmost axial highstudied. The earthquake swarm was probably associated with an emanation oflava creating a region of high backscatter, located just to the east of thecentral axial high. In addition, the region of high-backscatterremains unsampled because it lay underneath the nadir of the processedSeaMARC tracks used to plan the submersible survey. However many sampleswere taken and structural studies of the evolving Reykjanes Ridge werecarried out.  相似文献   

20.
Mesoscale distribution of the density and productivity of bacterioplankton at representative geological locations in the rift ecosystem of the North Fiji Basin were clarified by sampling using a mannedShinkai 6500 submersible. The bacterioplankton density inside the hot and warm fluids of hydrothermal vents was one order magnitude greater than that in the deep water outside the vent plume. The bacterial production was highest inside the hot and warm vent fluids, and was higher just outside the hot and warm vent fluids than further outside in the deep water surrounding the vent plume, respectively. Productivity from outside to inside the vent fluid varied from 0.01 to 0.71 gC m–3 day–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号