首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent observations of the TeV γ-ray spectra of the two closest active galactic nuclei (AGNs), Markarian 501 (Mrk 501) and Markarian 421 (Mrk 421), by the Whipple and HEGRA collaborations have stimulated efforts to estimate or limit the spectral energy density (SED) of extragalactic background light (EBL) which causes attenuation of TeV photons via pair-production when they travel cosmological distances. In spite of the lack of any distinct cutoff-like feature in the spectra of Mrk 501 and Mrk 421 (in the interval 0.26–10 TeV) which could clearly indicate the presence of such a photon absorption mechanism, we demonstrate that a strong EBL attenuation signal (survival probability of 10 TeV photon <10−2) may still be present in the spectra of these AGNs. This attenuation could escape detection due to ambiguity of spectra interpretation between intrinsic properties of the sources and absorption by EBL. By estimating the minimal and maximal opacity of the universe to TeV γ-ray photons, we calculate the visibility range for current and future γ-ray observatories, and show that the Whipple γ-ray telescope should be able to detect (in 10 hours at a 5σ confidence level) a BL Lac object with properties similar to Mrk 501 during its peak activity located at distances up to z=0.12. The proposed atmospheric Cherenkov telescope array VERITAS should be able to see such an object at least as far as z=0.3. Finally, we show that the proposed experiments, VERITAS, HESS, and MAGIC, may even be able to actually measure the EBL SED because their observations extend to the critical 75–150 GeV regime. In this transition region a distinct “knee-like” feature should exist in the spectra of blazars, which is invariant with respect to their intrinsic properties. The change of the spectral index and flux amplitude across this knee, if observed for several blazars, will provide missing pieces of information needed to measure EBL in the wavelength range 0.1–30 μm.  相似文献   

2.
This paper establishes united classification of gamma-ray bursts and their counterparts on the basis of measured characteristics: photon energy E and emission duration T. We find that the interrelation between these characteristics is such that as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the ET diagram, which represents a natural classification of all observed events in the energy range from about 109 to 10−6 eV and in the corresponding interval of durations from about 10−2 up to 108 s. The proposed classification results from our findings, which are principal for the theory and practical study of the phenomenon.  相似文献   

3.
Population synthesis is used to study the contribution from unresolved sources to the Galactic ridge emission measured by EGRET. Synthesized source counts are compared with the 3rd EGRET catalogue at low and high latitudes. For pulsar-like populations, 5–10% of the emission >100 MeV comes from sources below the EGRET threshold. A steeper luminosity function can increase this to 20% without violating EGRET source statistics. Less luminous populations can produce much higher values without being detected. Since the unresolved source spectrum is different from the interstellar spectrum, it could provide an explanation of the observed MeV and GeV excesses above the predictions, and we give an explicit example of how this could work.  相似文献   

4.
We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in the GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in the TeV range by synchrotron radiation of ultra-high-energy protons ( 1020 eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.  相似文献   

5.
6.
We investigate numerically the contribution to the cosmic gamma-ray background from cosmic-ray ions and electrons accelerated at intergalactic shocks associated with cosmological structure formation. We show that the kinetic energy of accretion flows in the low-redshift intergalactic medium is thermalized primarily through moderately strong shocks, which allow for an efficient conversion of shock ram pressure into cosmic-ray pressure. Cosmic rays accelerated at these shocks produce a diffuse gamma-ray flux which is dominated by inverse Compton emission from electrons scattering off cosmic microwave background photons. Decay of neutral π mesons generated in p–p inelastic collisions of the ionic cosmic-ray component with the thermal gas contribute about 30 per cent of the computed emission. Based on experimental upper limits on the photon flux above 100 MeV from nearby clusters we constrain the efficiency of conversion of shock ram pressure into relativistic CR electrons to  ≲1 per cent  . Thus, we find that cosmic rays of cosmological origin can generate an overall significant fraction of order 20 per cent and no more than 30 per cent of the measured gamma-ray background.  相似文献   

7.
We present new calculations of the evolving UV background out to the epoch of cosmological reionization and make predictions for the amount of GeV gamma-ray attenuation by electron–positron pair production. Our results are based on recent semi-analytic models of galaxy formation, which provide predictions of the dust-extinguished UV radiation field due to starlight, and empirical estimates of the contribution due to quasars. We account for the reprocessing of ionizing photons by the intergalactic medium. We test whether our models can reproduce estimates of the ionizing background at high redshift from flux decrement analysis and proximity effect measurements from quasar spectra, and identify a range of models that can satisfy these constraints. Pair production against soft diffuse photons leads to a spectral cut-off feature for gamma rays observed between 10 and 100 GeV. This cut-off varies with redshift and the assumed star formation and quasar evolution models. We find only negligible amounts of absorption for gamma rays observed below 10 GeV for any emission redshift. With observations of high-redshift sources in sufficient numbers by the Fermi Gamma-ray Space Telescope and new ground-based instruments, it should be possible to constrain the extragalactic background light in the UV and optical portion of the spectrum.  相似文献   

8.
Two classes of X-ray pulsars, the anomalous X-ray pulsars and the soft gamma-ray repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.  相似文献   

9.
10.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

11.
We present a calculation of the blazar contribution to the extragalactic diffuse γ -ray background (EGRB) in the EGRET energy range. Our model is based on inverse-Compton scattering as the dominant γ -ray production process in the jets of flat spectrum radio quasars (FSRQs) and BL Lac objects, and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff–Riley radio galaxies (FR galaxies).
The observed log  N –log  S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary behaviour of blazars, we find that unresolved AGN underproduce the intensity of the extragalactic background radiation. With our model only 20–40 per cent of the extragalactic background emission can be explained by unresolved blazars if we integrate to a maximum redshift of Z max=3. For Z max=5, blazars could account for 40–80 per cent of the EGRB. Roughly 70–90 per cent of the AGN contribution to the EGRB would result from BL Lacs. While the systematic uncertainties in our estimate for the FSRQ contribution appear small, in the case of BL Lacs our model parameters are not consistent with the results from studies in other wavelength regimes, and therefore may have larger systematic uncertainties. Thus we end up with two possibilities, depending on whether we underpredict or overpredict the BL Lac contribution: either unresolved AGN cannot account for the entire EGRB, or unresolved BL Lacs produce the observed background.
We predict a significant flattening of the γ -ray log  N –log  S function in the next two decades of flux below the EGRET threshold.  相似文献   

12.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

13.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

14.
The contribution of normal spiral galaxies to the high galactic latitude gamma-ray background >100 MeV is examined in the light of the estimates of its flux from the SAS-II measurements. The gamma-ray luminosity of each object is inferred from the known Milky Way value normalized to the corresponding optical quantity. Several possibilities are considered for the responsible physical production mechanism both diffuse and localized; they are then set to evolve with the galactic age according to three well-known evolutionary models. A final space-time integration leads to results which are expressed in the same unit as the measured background. It is seen that the model presented here can play an important role in the region > 100 MeV where the information on the spectral shape of the radiation is still very poor. Experimental tests for future gamma-ray observations are presented.  相似文献   

15.
伽玛射线暴源的新分布“BATSE的观测结果   总被引:1,自引:0,他引:1  
介绍了康普顿γ射线天文台上BATSE有关暴源分布观测的新发展。这一发现对80年代以前所普遍接受的γ射线暴起源于银盘内中子星的模型提出了严重挑战,并阐明了几种以BASE结果基础的暴源分布模型。  相似文献   

16.
We discuss the possibility of accurately estimating the source number density of ultra-high-energy cosmic rays (UHECRs) using small-scale anisotropy in their arrival distribution. The arrival distribution has information on their source and source distribution. We calculate the propagation of UHE protons in a structured extragalactic magnetic field (EGMF) and simulate their arrival distribution at the Earth using our previously developed method. The source number density that can best reproduce observational results by Akeno Giant Air Shower Array is estimated at about 10−5 Mpc−3 in a simple source model. Despite having large uncertainties of about one order of magnitude, due to small number of observed events in current status, we find that more detection of UHECRs in the Auger era can sufficiently decrease this so that the source number density can be more robustly estimated. Two hundred event observation above 4 × 1019 eV in a hemisphere can discriminate between 10−5 and 10−6 Mpc−3. Number of events to discriminate between 10−4 and 10−5 Mpc−3 is dependent on EGMF strength. We also discuss the same in another source model in this paper.  相似文献   

17.
A new method is presented to obtain a non-parametric maximum likelihood estimate of the luminosity function and the selection function of a flux-limited redshift survey. The method parametrizes the selection function as a series of stepwise power laws and allows possible evolution of the luminosity function. We also propose a new technique to estimate the rate of evolution of the luminosity function. This is based on a minimization of the observed large-scale power with respect to the evolutionary model. We use an ensemble of mock surveys extracted from an N -body simulation to verify the power of this method. We apply our estimators to the 1.2-Jy survey of IRAS galaxies. We find a far-infrared luminosity function in good agreement with previously published results and evidence for rather strong evolution. If the comoving number density of IRAS galaxies is assumed to scale ∝ (1 +  z ) P , we estimate P  = 4.3 ± 1.4.  相似文献   

18.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


19.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

20.
We discuss the physics of the power source for gamma-ray bursts (GRBs). There is a great variety of stellar systems proposed as progenitors of long and short GRBs, but any current model for the engine ultimately involves the formation of a hyper-accreting disk around a newly-formed black hole of a few solar masses. The study of such disks can shed light onto the burst composition and energy content. We present preliminary results from disk vertical structure calculations. These include neutrino transport, a height-dependent determination of the nuclear composition, and a simplified treatment of turbulent mixing. We find that vertical mixing is rapid enough to largely erase compositional gradients, and as a consequence the upper layers of the disk reflect the neutron-rich composition of the midplane close to the black hole. We review the implications of this for the nuclear composition of outflows in GRBs. Our models suggest an increasing role for pairs in the upper regions of the disk, and we speculate that a pair-driven wind could be a significant source of cooling. Elena M. Rossi is a Chandra Fellow  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号