共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Kofman 《Surveys in Geophysics》1992,13(6):551-571
The incoherent scatter technique has been applied since 1965 to study the ionosphere and thermosphere in different regions of the Earth. The analysis of the received signal gives access to several ionospheric parameters as a function of height: electron density, electron and ion temperatures and ion velocity. The derivation of these parameters is usually a complicated mathematical procedure that requires a non-linear regression program. A lot of research has been done in the ionospheric and atmospheric science using this technique.In this paper we describe how one derives the ion-neutral collision frequency and the ion composition parameters. It is usually difficult to retrieve these parameters with the incoherent scatter technique; as a result, in the standard data analysis procedure, an ionospheric model is used instead. However the numerical values chosen in the model have an influence on the other derived parameters. For instance the choice of a wrong ion composition leads to erroneous plasma temperatures. It is therefore important to assess by how much the standard procedure deviates from reality. For this reason we compare the ion composition and collision frequency retrieved from a sophisticated analysis scheme with the values that are derived from models under similar geophysical conditions.It also possible to derive from the observed ionospheric parameters the neutral concentrations, temperatures and winds, by using the energy and momentum equations for the ions and the neutrals. In this paper the different methods and the corresponding assumptions involved in the data analysis are discussed. We describe the influence of the frictional heating, of the vertical neutral wind and of the ionospheric perturbations on the derivation of the neutral atmospheric parameters. Our discussion of the processes involved are drawn from results obtained by Chatanika, Sondrestrom and EISCAT radars. 相似文献
2.
Based on the thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a thermospheric-ionospheric data assimilation and forecast system is developed. Using this system, we estimated the oxygen ions, neutral temperature, wind, and composition by assimilating the simulated data from Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation electron density profiles to evaluate their effects on the ionospheric forecast. An ensemble Kalman filter data assimilation scheme and combined state and parameter estimation methods are used to estimate the unobserved parameters in the model. The statistical results show that the neutral and ion compositions are more effective than the neutral temperature and wind for improving the forecast of the ionospheric electron density, whose root mean square errors in the assimilation period decreased by approximately 40%, 30%, and 10% due to the estimations of the neutral composition, oxygen ions, and neutral temperature, respectively. Due to the different physical and chemical processes that these parameters primarily affect, their e-folding times differ greatly from longer than 12 h for neutral composition to approximately 6 h for oxygen ions and 3 h for neutral temperature. The effect of estimating the neutral composition on improving the ionospheric forecast is greater than that of estimating the oxygen ions, which can be also be seen in an actual data assimilation experiment. This indicates that the neutral composition is the most important thermospheric parameter in ionospheric data assimilations and forecasts. 相似文献
3.
利用曲靖非相干散射雷达2017—2018年春夏季观测数据首次分析了电离层日间150~450km电子温度的地方时与高度变化特征及其与电子密度的相关性.发现hmF2及以上的电子温度在日出日落时具有两个峰值,在11∶00—16∶00LT之间变化较小,高度越高午后上升的时间越早;从150km开始迅速增加,在约220km达到最大值,然后开始降低,在约300~350km达到最小值,最后单调上升;200km以下电子温度与电子密度成正相关(主要由热传导控制),200~450km之间存在明显的反相关(光电离过程占主导),电子-离子温度差与电子密度对数之间存在近似线性关系,电子温度逐日变化与光电离因子的变化趋势相似,这种相关性在中午与午后更明显;以上结果与其他非相干散射雷达观测和电离层模型计算结果基本一致,但也存在一些差别,需要结合更多数据深入分析. 相似文献
4.
M.J. Kosch B. Gustavsson C. Heinselman T. Pedersen M.T. Rietveld J. Spaleta A. Wong W. Wang C. Mutiso B. Bristow J. Hughes 《Journal of Atmospheric and Solar》2009,71(17-18):1959-1966
We report first results from a unique experiment performed at the HIPAS ionospheric modification facility in conjunction with the Poker Flat incoherent scatter radar in Alaska. High-power radio waves at 2.85 MHz, which corresponds to the second electron gyro-harmonic at ~245 km altitude, were transmitted into the nighttime ionosphere. Clear evidence of F-region ionospheric electron temperature enhancements were found, for the first time at this pump frequency, maximizing when the pump frequency is close to the second gyro-harmonic and double resonance. This is consistent with previous pump-enhanced artificial optical observations. We estimate the plasma heating efficiency to be approximately double that for higher pump frequencies. 相似文献
5.
T. Nygren M. Markkanen M. Lehtinen E. D. Tereshchenko B. Z. Khudukon O. V. Evstafiev P. Pollari 《Annales Geophysicae》1997,14(12):1422-1428
In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods. 相似文献
6.
Comparison of methods for estimating earth resistivity from airborne electromagnetic measurements 总被引:1,自引:0,他引:1
Earth resistivity estimates from frequency domain airborne electromagnetic data can vary over more than two orders of magnitude depending on the half-space estimation method used. Lookup tables are fast methods for estimating half-space resistivities, and can be based on in-phase and quadrature measurements for a specified frequency, or on quadrature and sensor height. Inverse methods are slower, but allow sensor height to be incorporated more directly. Extreme topographic relief can affect estimates from each of the methods, particularly if the portion of the line over the topographic feature is not at a constant height above ground level. Quadrature–sensor height lookup table estimates are generally too low over narrow valleys. The other methods are also affected, but behave less predictably. Over very good conductors, quadrature–sensor height tables can yield resistivity estimates that are too high. In-phase–quadrature tables and inverse methods yield resistivity estimates that are too high when the earth has high magnetic susceptibility, whereas quadrature–sensor height methods are unaffected. However, it is possible to incorporate magnetic susceptibility into the in-phase–quadrature lookup table. In-phase–quadrature lookup tables can give different results according to whether the tables are ordered according to the in-phase component or the quadrature component. The rules for handling negative in-phase measurements are particularly critical. Although resistivity maps produced from the different methods tend to be similar, details can vary considerably, calling into question the ability to make detailed interpretations based on half-space models. 相似文献
7.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin. 相似文献
8.
Since the auroral ionosphere provides an important energy sink for the magnetosphere, ionosphere-thermosphere coupling must be investigated when considering the energy budget of the ionosphere-magnetosphere coupling. We present the first Scandinavian ground-based study of high-latitude F-region ion-neutral frictional heating where ion velocity and temperature are measured by the EISCAT incoherent scatter radar as well as neutral wind and temperature being measured simultaneously by a Fabry-Perot interferometer. A geomagnetically active period (Kp = 7- - 5-) and quiet period (Kp = 0+ - 0) were studied. Neglecting the neutral wind can result in errors of frictonal heating estimates of 60% or more in the F-layer. About 96% of the local ion temperature enhancement over the neutral temperature is accounted for by ion-neutral frictional heating. 相似文献
9.
10.
Dr. S. J. Bauer 《Pure and Applied Geophysics》1958,40(1):235-240
Summary This paper discusses the general aspects of troposphere-ionosphere relationships and a suggested mechanism of a possible coupling between lower and upper atmosphere. The presentation includes results of a correlation analysis surface pressure and electron density of the ionosphericF2 layer for Washington, D.C., covering a time interval of 23 months. The correlation is significant for only three months and the sign of the correlation is not consistent. The three significant correlations between surface pressure andF2 electron density occur at times of an «index cycle»; i.e., the periodic fluctuations in the zonal circulation of the atmosphere and for a month of heavy hurricane activity. The review of correlations obtained by other authors also indicates that their significant correlations occur at times when intensive changes in the tropospheric circulation occur, especially in winter and spring (the time favored by index cycles) and at the beginning and retreat of the summer monsoon in India. The variable sign of correlation between surface pressure and ionospheric characteristics is considered to be the result of the ambiguity of surface pressure as an indicator for dynamic changes in the lower atmosphere which may possibly initiate certain changes in the upper atmosphere. It is speculated that the observed correlations are the effect of upward propagation of strong disturbances from the troposphere to the ionosphere. At the present time, however, no definite conclusion can be drawn as to the reality of the suggested troposphere-ionosphere relationships. 相似文献
11.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test. 相似文献
12.
ABSTRACTWater infiltration into soils is an important component of hydrological processes. Direct measurement of infiltration is time consuming, expensive and often involves large spatial and temporal variability. The objective of this study was to develop and verify parametric pedotransfer functions (PTFs) to predict infiltration parameters. Consequently, 119 double-ring infiltration data were collected. The parameters of Philip, Kostiakov, Kostiakov-Lewis and Horton models were obtained, using the sum of squares error optimization method. Some parametric PTFs were then derived to predict the parameters of the infiltration models, using stepwise regression analysis. The results indicated a reasonable estimation of infiltration parameters by the derived PTFs. These results were more accurate when the land use of the studied area was considered. Overall results of this study suggest infiltration-based PTFs could be established as a reasonable indirect method for estimating infiltration parameters.
Editor M.C. Acreman; Associate editor N. Verhoest 相似文献
13.
The recent availability of substantial data sets taken by the EISCAT Svalbard Radar allows several important tests to be made on the determination of convection patterns from incoherent scatter radar results. During one 30-h period, the Svalbard Radar made 15 min scans combining local field aligned observations with two, low elevation positions selected to intersect the two beams of the Common Programme Four experiment being simultaneously conducted by the EISCAT VHF radar at Troms. The common volume results from the two radars are compared. The plasma convection velocities determined independently by the two radars are shown to agree very closely and the combined three-dimensional velocity data used to test the common assumption of negligible field-aligned flow in this regime. 相似文献
14.
利用漠河站、左岭站、富克站垂测仪数据和COSMIC反演的电离层资料,分析比较了太阳活动高年两种探测手段获取的电离层特征参量(NmF2、hmF2)的相关性.结果表明,两种方式获取的电离层对应特征参量相关性较高,且NmF2的相关性好于hmF2,同时相关性与纬度和季节有关.在地磁中纬度地区对应参量相关性较好,而在地磁低纬度受北驼峰控制区域相关性降低;在电离层赤道异常区域,春秋季、夏季对应特征参量相关性好于冬季.造成冬季相关性低的可能原因是,在跨越赤道中性风作用下,冬季电离层赤道异常区电子浓度梯度较大,造成掩星反演误差增大,致使两种探测手段获取的电离层特征参量相关性降低. 相似文献
15.
Studying the processes generating different-scale inhomogeneities is one of the challenging problems of ionospheric physics.
Plasma instabilities are one of the physical mechanisms by which small-scale inhomogeneities are formed. The main forms of
instability in the ionospheric E-layer are two-stream and gradient-drift ones. The inhomogeneities generated by them lead
to an abnormally intense radio scattering of different wavelengths (known as coherent echo (CE) or radio aurora) in the E-layer.
Therefore, the method of radiowave backscattering is among the widely used methods for studying such inhomogeneities. The
CE phenomenon has been investigated most intensely at high and equatorial latitudes, where the conditions for the CE origination
are formed rather regularly. For the last decade, CE has also been intensely studied at midlatitudes, where it is observed
less frequently and its formation conditions are less known. In 1998–2006, the purposeful studies of the midlatitude CE peculiarities
were performed at the Irkutsk incoherent scatter (IS) radar, with a particular emphasis on its coherent properties. It was
for the first time found out that the spectra of some data sets had a fine comb-shaped structure, which generated well-known
single-humped CE spectra as a result of statistical averaging. In the scope of this study, unique coherent methods for processing
individual data sets of CE signals were developed, making it possible to reveal the peculiarities of unaveraged CE-signal
spectra. To describe these peculiarities, we proposed a new model of the inhomogeneity spectrum, which is the superposition
of the discrete set of spatial harmonics with close wave numbers. The model was shown to adequately describe the scattered
signal characteristics observed experimentally. 相似文献
16.
Arecibo (18.4 N, 66.7 W) incoherent scatter (IS) observations of electron density N(h) are compared with the International Reference Ionosphere (IRI-95) during midday (10/14 h), for summer, winter and equinox, at solar maximum (1981). The N(h) profiles below the F2 peak, are normalized to the peak density NmF2 of the F region and are then compared with the IRI-95 model using both the standard B0 (old option) and the Gulyaeva-B0 thickness (new option). The thickness parameter B0 is obtained from the observed electron density profiles and compared with those obtained from the IRI-95 using both the options. Our studies indicate that during summer and equinox, in general, the values of electron densities at all the heights given by the IRI model (new option), are generally larger than those obtained from IS measurements. However, during winter, the agreement between the IRI and the observed values is reasonably good in the bottom part of the F2 layer but IRI underestimates electron density at F1 layer heights. The IRI profiles obtained with the old option gives much better results than those generated with the new option. Compared to the observations, the IRI profiles are found to be much thicker using Gulyaeva-B0 option than using standard B0. 相似文献
17.
本文利用经验正交函数(Empirical Orthogonal Function,简称EOF)方法分析了Millstone Hill非相干散射雷达(Incoherent Scatter Radar,简称ISR)近三个太阳黑子周期(1976年2月~2006年4月)的实测电离层160~700 km的电子浓度剖面资料,并分别用Chapman-α函数拟合了平均电子浓度剖面和带有均值的前三阶EOF级数.结果表明:电子浓度剖面的EOF级数的第一阶项主要控制F2层峰值浓度NmF2,第二阶项同时控制F2层的峰高hmF2和等效标高Hm,第三阶项主要控制等效标高Hm.进一步分析了对应的EOF系数的周日变化、季节变化和太阳活动周期变化,这些变化反映了NmF2,hmF2,Hm的气候学变化规律,例如电离层的冬季异常、半年异常等.EOF方法在级数展开方面收敛速度快,很少数低阶项即能反映电子浓度剖面的主要变化,因此可用于提取出电子浓度剖面的主要分布特征及其周日变化与气候学变化特性,并可用于进一步构建相应的经验模式. 相似文献
18.
The measurements of the critical frequencies of the ionospheric F2 layer based on vertical radiosounding, which was performed with a CADI digital ionosonde at the Voeykovo magnetic–ionospheric observatory in February 2013, have been considered. The observations have been compared with the upper atmosphere numerical model (UAM) data for three days that differ in the amplitude and the character of solar and magnetic activity and correspond to quiet and moderately disturbed states of the ionosphere. The work was performed in order to improve the methods for determining the ionospheric state by vertical sounding ionograms. The time variations in the F2 layer critical frequency, electric field vector zonal component, and thermospheric wind velocity meridional component have been analyzed. Calculations were performed with three UAM variants. The UAM version providing the best agreement with the CADI ionosonde data was the version in which the neutral temperature, neutral composition, and pressure gradients are calculated according to the MSIS empirical model and the horizontal neutral wind velocity is determined by the equation of motion with pressure gradients from MSIS. The calculated values corresponded to the measurements, except those for the evening, because the electron density at the ionospheric F2 layer maximum depends more strongly on electric fields and thermospheric wind velocities during this period. Thus, the indicated UAM version with the above limitations can be used to determine the state of the subauroral ionosphere. 相似文献
19.
利用地震P波初始信息快速估算震级是地震预警系统中的重要部分之一,文中详细介绍了地震预警研究中常用的两种卓越周期估算震级方法:τpmax方法和τc方法。为了评估这两种方法哪一种震级估算精度更高,文中通过设置不同的估算震级时间窗以及不同的滤波频带,利用震级范围4.1~7.9的22次地震的强震观测记录对这两种方法进行了比较分析。比较的结果表明:本文计算得到的τpmax值和τc值与震级之间均存在线性比例关系,与前人的研究结果一致;在相同的0.075~3 Hz带通滤波条件下,利用P波触发后3 s地震记录计算的τc值可获得最优的震级估计结果,τc与震级的相关系数为0.78,标准差为0.16。仅经过0.075 Hz高通滤波得到的τpmax值与震级的线性相关度比0.075~3Hz带通滤波得到的τpmax值与震级的线性相关度低,而是否经过低通滤波对τc值与震级的线性比例关系没有影响。建议在地震预警系统中优先采用3 sτc方法作为震级估算方法。 相似文献