首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known of the interactions between groundwater and surface water on deeply weathered landscapes of low relief in the Great Lakes Region of Africa (GLRA). The role of groundwater in sustaining surface-water levels during periods of absent rainfall is disputed and groundwater is commonly excluded from estimations of surface-water balances. Triangulated piezometers installed beside lake gauging stations on Lake Victoria and Lake Kyoga in Uganda provide the first evidence of the dynamic interaction between groundwater and surface water in the GLRA. Stable isotope ratios (2H:1H, 18O:16O) support piezometric evidence that groundwater primarily discharges to lakes but show further that mixing of groundwater and lake water has occurred at one site on Lake Victoria (Jinja). Layered-aquifer heterogeneity, wherein fluvial-lacustrine sands overlie saprolite, gives rise to both rapid and slow groundwater fluxes to lakes which is evident from the recession of borehole hydrographs following recharge events. Darcy throughflow calculations suggest that direct contributions from groundwater to Lake Victoria comprise <1% of the total inflows to the lake. Groundwater/surface-water interactions are strongly influenced by changing drainage base (lake) levels that are controlled, in part, by regional climate variability and dam releases from Lake Victoria (Jinja).  相似文献   

2.
Seismostratigraphical studies of the 11.8‐km2‐large and ~140‐m‐deep Lake Bolshoye Shchuchye, Polar Ural Mountains, reveal up to 160‐m‐thick acoustically laminated sediments in the lake basin. Using a dense grid of seismic lines, the spatial and temporal distributions of the sedimentary history have been reconstructed. Three regional seismic horizons have been identified and correlated with the well‐dated 24‐m‐long sediment core retrieved from the lake. Isopach maps constructed from the seismic data show four phases of sedimentation. A contour map of the deepest regional seismic reflector represents the earliest hemipelagic sedimentation in the lake. Three contour maps represent time intervals covering the last 23 cal. ka based on the well‐dated core stratigraphy from the lake. The detailed time constraints on the upper stratigraphical units in the lake allow calculation of the lake's development in terms of sediment fluxes and the denudation rates from the Last Glacial Maximum (LGM) to the present. The sedimentation in Lake Bolshoye Shchuchye has been dominated by hemipelagic processes during at least the last 24 cal. ka BP only locally interrupted by delta progradation and slope processes. A major shift in the sediment accumulation at c. 18.7 cal. ka BP is interpreted to mark the end of the local glacial maximum, greatly reduced denudation and the onset of the deglaciation period; this also demonstrates how fast the glaciers melted and possibly disappeared at the end of the LGM. The denudation rate during the Holocene is only a fifth of the LGM rate. The age of the oldest stratified sediments in Lake Bolshoye Shchuchye is not well constrained, but estimated as c. 50–60 ka.  相似文献   

3.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

4.
Sedimentological and geomorphological studies of terraces around Lake Van (1647 m) provided a preliminary framework for lake‐level variations. The elevations of terraces and past lake level were measured with a differential global positioning system. A chronology is developed using 234U/230Th dating of travertines, 39Ar/40Ar dating of pyroclastites and 14C dating of organic matter. Facies and stratigraphic correlations identify four transgressions (C1′, C1″, C2′ and C2″), each followed by a regression which ended with low lake levels that caused river incision and terrace formation. Evidence of the oldest transgression (C1′) is found in the uppermost reaches of valleys up to 1755 m, an altitude higher than the present lake threshold (1736 m). This C1′ transgression may be related to pyroclastic flows which dammed an outlet located in the western part of the lake basin and which is dated to before 105 ka. After 100 ka, a second transgression (C1″) reached 1730/1735 m, possibly related to a younger ignimbrite flow, in association with high water inflow (warm and/or wetter conditions). The two younger transgressions reached 1700–1705 m. The first one (C2′) is dated to 26–24.5 cal. ka BP and the second one (C2″) to 21–20 cal. ka BP. Available data suggest that the long‐term lake‐level changes responded mainly to climate oscillations. Additional events such as river captures caused by volcanic falls filling valleys, tectonism, erosion and karstic diversion may have impacted these long‐term lake‐level changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of changing palaeoclimate and palaeoenvironment on human evolution during the Pleistocene is debated, but hampered by few East African records directly associated with archaeological sites prior to the Last Glacial Maximum. Middle to Late Pleistocene deposits on the shoreline of eastern Lake Victoria preserve abundant vertebrate fossils and Middle Stone Age arte‐facts associated with riverine tufas at the base of the deposits, which are ideal for palaeoenvironmental reconstructions. New data from tufas identified on Rusinga Island and on the mainland near Karungu, Kenya are provided from outcrop, thin sections, mineralogical, stable isotopic and U‐series dating analyses. Tufa is identified in four sites: Nyamita (94·0 ± 3·3 and 111·4 ± 4·2 ka); Kisaaka, Aringo (455 ± 45 ka); and Obware. The age ranges of these tufa deposits demonstrate that spring‐fed rivers were a recurrent, variably preserved feature on the Pleistocene landscape for ca 360 kyr. Poor sorting of clastic facies from all sites indicates flashy, ephemeral discharge, but these facies are commonly associated with barrage tufas, paludal environments with δ13C values of ca 10‰ indicative of C3 plants and fossil Hippopotamus, all of which indicate a perennial water source. Other tufa deposits from Nyamita, Obware and Aringo have a mixed C3/C4 signature consistent with a semi‐arid C4 grassland surrounding these spring‐fed rivers. The δ18O values of tufa from Nyamita are on average ca 1‰ more negative than calcite precipitated from modern rainfall in the region, suggesting greater contribution of depleted monsoonal input, similar to the Last Glacial Maximum. Microdebitage and surface‐collected artefacts indicate that early modern humans were utilizing these spring‐fed rivers. The presence of spring?fed rivers would have afforded animals a reliable water source, sustaining a diverse plant and animal community in an otherwise arid environment.  相似文献   

6.
The sediment and diatom stratigraphy of a small pond on The Pas moraine, near Grand Rapids, Manitoba, reveals a change in sedimentary environment related directly to the last stages of Glacial Lake Agassiz. Beach sands were replaced by clay 7300 14C y. a., then by organic silt and, at 4000 14C y. a. by coarse organic detritus; the corresponding diatom assemblages were (I) a predominantly planktonic spectrum in beach sands, (II) a rich assemblage of nonplanktonic forms, and (III) a distinctly nonplanktonic acidophilous spectrum. These results confirm Elson's (1967) reconstruction of the extent and chronology of the final (Pipun) stage of Glacial Lake Agassiz. The sedimentary environments change from a sandy beach of a large lake at 7300 BP to a small, shallow eutrophic pond with clay and silt deposition from 7000 to 4000 BP. From 4000 BP to the present, organic detritus was deposited in a shallow pond that tended toward dystrophy.  相似文献   

7.
8.
Glacial hazards relate to hazards associated with glaciers and glacial lakes in high mountain areas and their impacts downstream. The climatic change/variability in recent decades has made considerable impacts on the glacier life cycle in the Himalayan region. As a result, many big glaciers melted, forming a large number of glacial lakes. Due to an increase in the rate at which ice and snow melted, the accumulation of water in these lakes started increasing. Sudden discharge of large volumes of water with debris from these lakes potentially causes glacial lake outburst floods (GLOFs) in valleys downstream. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. Monitoring of the glacial lakes and extent of GLOF impact along the downstream can be made quickly and precisely using remote sensing technique. A number of hydroelectric projects in India are being planned in the Himalayan regions. It has become necessary for the project planners and designers to account for the GLOF also along with the design flood for deciding the spillway capacity of projects. The present study deals with the estimation of GLOF for a river basin located in the Garwhal Himalaya, India. IRS LISSIII data of the years 2004, 2006 and 2008 have been used for glacial lake mapping, and a total of 91 lakes have been found in the year 2008, and out of these, 45 lakes are having area more than 0.01?km2. All the lakes have been investigated for vulnerability for potential bursting, and it was found that no lake is vulnerable from GLOF point of view. The area of biggest lake is 0.193, 0.199 and 0.203?km2 in the years 2004, 2006 and 2008, respectively. Although no lake is potentially hazardous, GLOF study has been carried out for the biggest lake using MIKE 11 software. A flood of 100-year return period has been considered in addition to GLOF. The flood peak at catchment outlet comes out to be 993.74, 1,184.0 and 1,295.58 cumec due to GLOF; 3,274.74, 3,465.0 and 3,576.58 cumec due to GLOF; and 100-year return flood together considering breach width of 40, 60 and 80?m, respectively.  相似文献   

9.
We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.  相似文献   

10.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

11.
The deposits of Glacial Lake Quincy overlie a diamicton associated with the classically defined Illinoian limit in central Indiana. This lake covered at least 180 km2 with a depth of > 20 m and developed when the Illinoian ice sheet retreated 15 km from the maximum limit, causing lake impoundment against Devore Ridge. Overflow from Glacial Lake Quincy eroded across the ridge forming a number of steeped-walled outlets. A section along Mill Creek exposes a sedimentologic sequence associated with Glacial Lake Quincy from a subglacial diamicton to ice-proximal to ice-distal glacial lacustrine sediments. We report new optical ages by multiple aliquot regenerative dose procedure for the fine-grained rhythmically bedded sediments presumed to represent the lowest energy depositional facies, dominated by suspension settling, which maximized sunlight exposure. In turn, optical ages were determined on the fine-grained (4-11 μm) polymineral and quartz fractions under infrared and blue excitation, which yielded statistically similar ages. Optical ages span from ca. 170 to 108 ka, with the average of 16 optical ages indicating deglaciation at ca. 135 ka, generally coincident with Marine Oxygen Isotope Stage 6-to-5 transition and rise in global sea level.  相似文献   

12.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

13.
Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483. Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ~86 ± 13 Mg km2 a?1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ~41 ± 4 Mg km2 a?1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.  相似文献   

14.
Geomorphic, stratigraphic, geotechnical, and biogeographic evidence indicate that failure of a Pleistocene ice dam between 15.5 and 26 ka generated a megaflood from Glacial Lake Atna down the Matanuska Valley. While it has long been recognized that Lake Atna occupied ≥ 9000 km2 of south-central Alaska's Copper River Basin, little attention has focused on the lake's discharge locations and behaviors. Digital elevation model and geomorphic analyses suggest that progressive lowering of the lake level by decanting over spillways exposed during glacial retreat led to sequential discharges down the Matanuska, Susitna, Tok, and Copper river valleys. Lake Atna's size, ∼ 50 ka duration, and sequential connection to four major drainages likely made it a regionally important late Pleistocene freshwater refugium. We estimate a catastrophic Matanuska megaflood would have released 500–1400 km3 at a maximum rate of ≥ 3 × 106 m3 s− 1. Volumes for the other outlets ranged from 200 to 2600 km3 and estimated maximum discharges ranged from 0.8 to 11.3 × 106 m3 s− 1, making Lake Atna a serial generator of some of the largest known freshwater megafloods.  相似文献   

15.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

16.
Vilca  Oscar  Mergili  Martin  Emmer  Adam  Frey  Holger  Huggel  Christian 《Landslides》2021,18(6):2211-2223

Glacial lakes represent a threat for the populations of the Andes and numerous disastrous glacial lake outburst floods (GLOFs) occurred as a result of sudden dam failures or dam overtoppings triggered by landslides such as rock/ice avalanches into the lake. This paper investigates a landslide-triggered GLOF process chain that occurred on February 23, 2020, in the Cordillera Vilcabamba in the Peruvian Andes. An initial slide at the SW slope of Nevado Salkantay evolved into a rock/ice avalanche. The frontal part of this avalanche impacted the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and surficially eroded the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. We analyze the situations before and after the event as well as the dynamics of the upper portion of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data and a computer simulation with a two-phase flow model. Comparison of pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m3. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave of 27 m height. The GLOF peak discharge at the dam reached almost 10,000 m3/s. However, due to the high freeboard, less than 10% of the lake volume drained, and the lake level increased by 10–15 m, since the volume of landslide material deposited in the lake (roughly 1.3 million m3) was much larger than the volume of released water (57,000 m3, according to the simulation). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.

  相似文献   

17.
《Quaternary Research》2011,76(3):393-396
A prominent lake formed when glaciers descending from the Kodar Range blocked the River Vitim in central Transbaikalia, Siberia. Glacial Lake Vitim, evidenced by palaeoshorelines and deltas, covered 23,500 km2 and held a volume of ~ 3000 km3. We infer that a large canyon in the area of the postulated ice dam served as a spillway during an outburst flood that drained through the rivers Vitim and Lena into the Arctic Ocean. The inferred outburst flood, of a magnitude comparable to the largest known floods on Earth, possibly explains a freshwater spike at ~ 13 cal ka BP inferred from Arctic Ocean sediments.  相似文献   

18.
The correlation between the δ^13C and δ^13C-δ^18O in primary carbonates is affected by several factors such as hydrological balance, total CO2 concentrations, climatic condition and lake productivity. The influence of these factors on the δ^13C-δ^18O correlation may be different on different time scales. In this paper, two different-type lakes in southwestern China, Lake Erhai and Lake Chenghai, are selected to investigate the influence of climatic pattern on the δ^13C-δ^18O correlation and to evaluate the reliability of the δ^13C-δ^18O covariance as an indicator of hydrological closure. The results show that there exists good correlation between the δ^13C and δ^18O in Lake Erhai (overflowing open lake) and in Lake Chenghai (closed lake). This suggests that the δ^13C-δ^18O covariance may be not an effective indicator of hydrological closure for lakes, especially on short time scales. On the one hand, a hydrologically open lake may display covariant δ^13C and δ^18O as a result of climatic influence. The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of the δ^13C-δ^18O covariance in Lake Erhai and Lake Chenghai. On the other hand, a hydrologically closed lake unnecessarily displays covariant trends between δ^13C and δ^18O because of the buffering effect of high CO2 concentration on the δ^13C shift in hyper-alkaline lakes. We should be prudent when we use the covariance between δ^13C and δ^18O to judge the hydrological closure of lake.  相似文献   

19.
Lake Tyrrell is a large ephemeral salt lake, the level of which is controlled by climate and groundwater. Up to a metre of water fills the basin during the wetter and cooler winter season, but evaporates during the summer, precipitating up to 10 cm of halite. Each year essentially the same pool of ions is redissolved by this annual freshening. The small percentage of gypsum precipated (< 2%) in the surface salt crust reflects the low calcium content of the brine which, in turn, is a function of the negligible net discharge of calcium from the groundwater system. The small influx of fine‐grained clastic sediment to the lake floor comes from surface runoff, wind, and reworking of older sediment from the shoreline.

The Lake Tyrrell basin lies in a setting in which three different groundwater types, identified by distinct salinities, interact with surface waters. A refluxing cycle that goes from discharging groundwater at the basin margin, to surface evaporation on the lake floor, to recharge through the floor of the lake, controls the major chemical characteristics of the basin. In this process, salts are leached downward from the lake floor to join a brine pool below the lake. This provides an outlet from the lake, especially under conditions that have been both drier and wetter than those of today. Enhanced discharge occurs under drier conditions, when the enclosing regional groundwater divide is lowered, whereas a rise in lake level increases the hydraulic head over that of the sub‐surface brine and promotes an increase in brine loss from the lake.

Sulphate‐reducing bacteria in a zone of black sulphide‐rich mud beneath the salt crust help prevent gypsum from being incorporated into the recent sedimentary record. However, below the upper 5 to 10 cm zone of bacterial activity, discoidal gypsum is being precipitated within the mud from the groundwater. These crystals have grown by displacing the mud and typically “float” in a clay matrix; in some zones, they form concentrations exceeding 50% of the sediment. The occasional laminae of more prismatic gypsum that occur within the upper metre of mud have crystallised from surface brines. The scarcity of these comparatively pure prismatic‐crystal concentrations probably is a function of unfavourable chemical conditions in the lake brine and of the role that sulphate‐reducing bacteria have played.  相似文献   

20.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号