首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
露天煤矿矿坑回填对冻土恢复的影响分析   总被引:1,自引:1,他引:0  
为分析露天煤矿矿坑回填对冻土恢复的影响,采用数值模拟方法,对一定初始温度条件和不同边界条件下露天开挖回填后的冻土恢复进行预测分析。分析结果表明:填土温度对回填后冻土恢复有很大的影响,当填土温度由+2.0℃降低为-2.0℃时,冻土的恢复速率明显加快,厚度明显增大;当填土表面温度为正温时,坑底内的冻土恢复较难;当填土表面温度为负温时,坑底内的冻土恢复速率以及冻土厚度均比正温时更快更厚;随着天然地表温度的降低,冻土恢复速率与冻土厚度也逐渐加快增厚。因而,应尽量选择冷季,并对回填土体作降温处理后再进行回填,以保证冻土快速恢复并保持稳定,这样更有利于矿区的生态环境恢复。  相似文献   

2.
北京某垂直地埋管区地温场变化规律研究   总被引:3,自引:3,他引:0       下载免费PDF全文
为研究地埋管换热区地温垂向深度及平面展布特征,在室外分别布设了U型垂直地埋管和深度不等的观测孔,在典型深度安装了地温传感器,利用2期采暖及间歇期地温数据分析了地层背景温度、换热区及观测区地温变化。垂向上,在地埋管换热区内,恒温带以上地温受气温与埋管换热的综合影响;变温带地层各深度地温降幅与埋深呈正相关,最大换热深度120 m处降幅达5℃,原始地温是不同岩性地层温度降幅中较之岩土导热性及赋水性更为重要的影响因素。平面上,距地埋管5 m内的地温经取热后呈不同程度的降低,埋管换热监测区温降幅度约0.6℃,最大降幅并不固定于某一深度;距埋管距离越小,地温开始降低的时间越早,降低程度越大,且越难以恢复。  相似文献   

3.
青藏铁路沿线天然场地多年冻土变化   总被引:2,自引:2,他引:0  
基于青藏铁路沿线30个天然场地2006—2015年地温观测资料,对多年冻土天然上限(以下称冻土上限)及其变化、不同深度冻土地温及其变化进行分析,研究了近期多年冻土时空变化特征。观测结果表明,冻土上限为0.88~9.14 m,平均为3.54 m。在冻土上限下降的场地中,冻土上限下降幅度为0.05~2.22 m,平均为0.51 m;冻土上限下降速率为0.01~0.25 m/a,平均为0.07 m/a。高温冻土区冻土上限下降幅度与下降速率分别大于低温冻土区的0.47 m与0.06 m/a。总体而言,冻土上限附近和15 m深度地温呈上升趋势。其中,冻土上限附近地温升温幅度为0.01~0.60℃,平均为0.16℃;冻土上限附近地温升温速率为0.001~0.067℃/a,平均为0.018℃/a。低温冻土区上限附近地温升温幅度与升温速率分别大于高温冻土区0.12℃和0.014℃/a。15 m深度地温升温幅度为0.01~0.48℃,平均为0.10℃,15 m深度地温升温速率为0.002~0.054℃/a,平均为0.011℃/a。低温冻土区15 m深度地温升温幅度和升温速率分别大于高温冻土区0.11℃和0.012℃/a。个别观测场地受局地因素影响,出现了冻土上限抬升和冻土地温下降的情形。  相似文献   

4.
本文在大量钻孔测温资料的基础上,系统分析了河南省城市浅层地温场分布特征,分析了不同地貌类型城市恒温带特征。全区地下水恒温带深度平均深度24.8m,温度一般15.5℃~17.5℃;冲积平原区松散层恒温带深度最浅、温度最高,内陆河谷盆地区松散层恒温带深度最深、温度最低。近山前地带基岩浅埋区,地温梯度低;沿深大断裂带和构造隆(凸)起区,地温梯度高;济源—商丘断裂的新乡—延津段、内黄凸起和通许凸起地温梯度高。通过分析地温增温率特征和地温恢复能力,得出颗粒越粗地温恢复能力K值较大,富水性越强、水力坡度越大K值越大。对影响浅层地温场的多种因素的系统研究表明,该区浅层地温场受城市、人类活动、地下水流场、地下水埋深、构造、地下水补给、排泄等因素影响明显。  相似文献   

5.
为了验证本次浅层地温场管内常温监测方法的可行性,在北京市某试验场地钻凿了一眼150m常温监测井,井内下入双U型垂直管,分别在U型管内管外相同深度布设了温度传感器。经过监测9个月地温场数据,得出该区域150m深度地温场随深度的增加呈现先递增后递减再递增的变化趋势;管内管外同一深度平均温度差介于0℃~0.4℃范围内,130m深度处温差最大,管内比管外温度高0.4℃,40m深度处管内管外温度一样;管内管外同一深度温度走势对比分析得出,同一深度温度变化一致,管内比管外温度变化滞后并未存在。  相似文献   

6.
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素.  相似文献   

7.
张伟 《地质与勘探》2020,56(4):802-808
利用新安煤田5个矿区的测温数据,分析了该煤田中深部地温场的分布、热演化、形成机理及其影响因素。经统计分析,整个研究区的地温梯度值介于1.24~3.24℃/hm之间,极小部分属高温异常区,大部分为正常地温区。在纵向上,地层温度与埋深呈现正相关性,且线性关系明显,充分体现出传导型增温特征;地温梯度则大致以400~600 m深度为分界线,该深度以浅的地温梯度值较为分散,且与地层深度呈负相关性,超过该深度以后地温梯度值变化幅度极小。在平面上,研究区地温梯度的整体分布规律为北低南高。分析结果表明,影响研究区地温场分布的主导因素为地质构造,其次为岩性变化及地下水活动。  相似文献   

8.
管道作为油气资源的最为常用的运输方式之一,穿越不同地质情况的区域,所面临的工程问题各有不同。本文对青海省某冻土区输气管道进行调研,针对出现的管沟融陷、工程构筑物冻胀变形等病害问题,选取典型断面,钻孔埋设温度传感器和沉降磁环测试元器件,对暖季和寒季管道周围土体温度和位移进行监测,研究输气管道周围地温变化及冻胀融沉规律,为冻土区输油气管道的设计、施工、运营、病害治理提供借鉴。研究表明:该冻土区寒暖季地表地温随气温波动较大,越靠近管道,地温年振幅越大;该区域冻土地温范围为-2~-1℃,地温带类型属基本稳定带,正温输气的热扰动,导致周围土体融沉;管道正上方受管道放热影响,地温均为正温,影响范围约1.5m;在近管道处,深度1~4m,地温受多重因素影响,深度4m以下,地温年较差较小,均为负温;冻胀由深处向上发生,时间上有滞后性;10月和11月为冻融剧烈时间段,应及时监测预警。  相似文献   

9.
基于黔西补作勘查区32口钻孔的简易测温资料,分析了勘查区浅部地温场的基本特征。研究发现,区内地温梯度在0.98~3.25℃/100m,平均2.07℃/100m,总体上属于正常地温场范畴;平面上变化较大,局部存在低温异常,在垂向上随着孔底深度增大,各钻孔地温梯度总体上趋于增高,但与埋深之间关系相对离散,钻孔温度曲线表现为两种基本形式。研究认为,断层构造控制了地温场的分布,地温异常带的展布方向反映区域构造的基本轮廓;地下水动力场微弱,对地温场影响不甚明显;地层岩性及埋深影响地温场的垂向分布。  相似文献   

10.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

11.
青藏铁路沿线多年冻土区地温场变化规律   总被引:19,自引:6,他引:13  
青藏铁路通过约550km的多年冻土区,统计和分析青藏高原多年冻土分布区主要气象台站的资料可以看出,近30a来高原多年冻土区的气候变化总的趋势是向着气温升高的方向发展的,气温的变化对多年冻土热状态的扰动主要表现在地温场的变化上.30多年来高原气温升高0.45℃左右,并引起冻土地温平均升高了0.2~0.3℃.分析青藏铁路通过的多年冻土地区典型地段测温孔资料,发现多年来气候转暖已经使冻土上部(20m以上)地温明显升高,影响深度已经波及到了40m.  相似文献   

12.
高温矿井综采工作区通风条件温度场的数值模拟   总被引:1,自引:0,他引:1  
以高温矿井综采工作区为研究对象,对采空回填区、煤体-空气换热系统进行了二维数值模拟。计算结果表明,在空气初始温度为295.95 K,煤体、采空回填材料初始温度为313.15 K情况下,顺槽、工作面空气温度低于304.52 K,顺槽、工作面内空气与煤体、采空回填材料温差最小值为0.5 K。煤体、采空回填区的温度由初始值313.15 K降至299~314 K。进风顺槽、工作面、回风顺槽内的空气经过对流换热后的热量值在76.17~83.10 kJ/kg。在不考虑冲淡、排除顺槽、工作面有毒有害气体和粉尘,仅从降低顺槽、工作面内温度情况下考虑,采用雷诺数为13 808~276 170均能满足要求。以较小的动力损耗方面考虑采用雷诺数为69 040值以下为宜。从获得排除高温气体情况下考虑,采用雷诺数为69 040以上的条件。以上结论为矿井热害的综合治理提供了重要依据。   相似文献   

13.
大兴安岭东坡新林林区冻土变化特征   总被引:3,自引:3,他引:0  
大兴安岭处于欧亚大陆多年冻土带南缘, 其多年冻土形成、 发展和保存更多受制于植被、 水分等局地因子的影响。采用钻探、 探地雷达和冻土温度长期监测等手段研究发现, 放牧活动会影响大兴安岭东坡新林林区活动层厚度, 放牧活动比较强烈的地段, 活动层可达2.5 m, 放牧区边缘至未放牧区域, 活动层缩减至1.5 m。塔头2013年11月2.0 m处的地温仍然在0 ℃以上(0.04 ℃), 当放牧行为终止及加漠公路改道后, 2.0 m处的温度开始逐渐恢复, 温度由-0.12 ℃降到-0.69 ℃, 1.5 m处的温度则由0.17 ℃降到-0.42 ℃, 2018年底塔头的活动层厚度已经小于1.5 m。从地表植被类型上看, 松树林、 塔头和灌丛的活动层多年平均厚度分别为0.8 m、 1.3 m和0.7 m, 近地表0.5 m处的年平均地温为0.07 ℃、 0.52 ℃和0.22 ℃, 年变化深度处(11 m)的年均温度为-1.34 ℃, -0.98 ℃和-2.19 ℃。从地温曲线类型上看, 灌丛下的多年冻土比较稳定, 地温曲线属于正梯度型。松树林和塔头下的冻土温度比较复杂, 松树林地温曲线为偏负梯度型-零梯度型-偏正梯度型, 塔头为负梯度型-扭曲型。在地表植被类型和人类活动的共同影响下, 研究区多年冻土经历了地表干扰开始退化、 干扰消除不再退化以及慢慢恢复的过程。  相似文献   

14.
Permafrost changes under natural sites along the Qinghai-Tibet Railway were investigated based on the ground temperature monitored from the year of 2006 to 2015. Among these sites, mean permafrost table was 3.54 m, with a range of 0.88 to 9.14 m. Among the sites with decreasing permafrost table, mean decreasing amplitude of permafrost table was 0.51 m, with a range of 0.05 to 2.22 m; mean decreasing rate of permafrost table was 0.07 m/a, with a range of 0.01 to 0.25 m/a. Decreasing amplitude and decreasing rate of permafrost table in high temperature regions were 0.47 m and 0.06 m/a greater than those in low temperature regions, respectively. In general, ground temperatures at permafrost table and 15 m depth presented rising tendency. Mean rising amplitude of ground temperature at permafrost table was 0.16 ℃, with a range of 0.01 to 0.60 ℃; mean rising rate of ground temperature at permafrost table was 0.018 ℃/a, with a range of 0.001 to 0.067 ℃/a. Rising amplitude and rising rate of ground temperature at permafrost table in low temperature regions were 0.12 ℃ and 0.014 ℃/a greater than those in high temperature regions, respectively. Mean rising amplitude of ground temperature at 15 m depth was 0.10 ℃, with a range of 0.01 to 0.48 ℃; mean rising rate of ground temperature at 15 m depth was 0.011 ℃/a, with a range of 0.002 to 0.054 ℃/a. Rising amplitude and rising rate of ground temperature at 15 m depth in low temperature regions were 0.11 ℃ and 0.012 ℃/a greater than those in high temperature regions, respectively. Due to the effect of local factors, increasing of permafrost table and decreasing of ground temperature were observed under several sites.  相似文献   

15.
霍拉盆地位于我国高纬度大片连续多年冻土区的北缘. 盆地内的冻土具有自中心向边缘厚度变薄、温度升高, 至四周山地出现融区等特征, 同时又受局地因素如地形地貌、地表覆被、地下水赋存规律及地质构造等影响, 冻土分布、厚度及温度的空间格局在遵从普遍规律的基础上又具有差异性. 近年来, 随着全球气候变暖及人为活动的逐步增强, 盆地内冻土及寒区环境变化显著, 对矿区转型至关重要的核心景观月牙湖几近干涸. 2013年6月、2014年5-7月先后2次对霍拉盆地多年冻土及寒区环境变化进行科学考察并展开初步研究. 在盆地内根据不同地貌、地表覆被及人为活动强度布设8个地温观测孔并将进行长期观测, 以期分析研究人为活动、植被等局地因子对冻土的影响及未来冻土与寒区环境变化; 同时, 对干涸的月牙湖底地形、地貌进行了调查并采集湖相沉积物样品, 以确定月牙湖的成因并进一步分析湖区气候及环境变迁; 对月牙湖畔湖心岛地下冰再次进行勘察, 发现厚层地下冰正在逐渐融化; 此外, 盆地内广泛发育的热喀斯特现象亦表明该区域冻土正在退化.  相似文献   

16.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

17.
多年冻土厚度对于多年冻土的区域分布和环境效应具有重要控制和指示意义. 应用瞬变电磁法(TEM)对青藏高原西昆仑地区的多年冻土下限进行了探测, 并结合钻孔资料分析了该研究区域多年冻土厚度的分布特征. 结果表明:研究区域多年冻土厚度随地形、地质条件的差异表现出显著的空间差异性. 沿着219国道从509道班到奇台达坂的高山峡谷区, 随着海拔的升高, 多年冻土从无到有, 而且, TEM探测到的多年冻土厚度从不到10 m到接近100 m, 平均厚度约为55 m; 自界山达坂向东到拉竹龙的低山丘陵区, 除部分区域发育融区外, 多年冻土厚度一般在50 m左右, TEM探测显示多年冻土平均厚度约为58 m; 进入甜水海盆地, 多年冻土厚度普遍超过60 m, TEM探测到靠近湖泊的盆地中心地带多年冻土平均厚度可达110 m. 多年冻土厚度随地温的降低呈显著的线性增加趋势, 10 m深度地温平均每降低1 ℃, 多年冻土厚度增加29 m. 多年冻土的厚度随海拔的升高显著增加, 同时局地因素对多年冻土的发育有显著影响, 其内在机制需要进一步研究.  相似文献   

18.
祁连山大通河源区冻土特征及变化趋势   总被引:7,自引:4,他引:3  
大通河源区位于祁连山中东部, 属高山多年冻土区, 利用源区内冻土钻探及监测资料对源区冻土发育的基本特征及变化趋势进行了分析和探讨. 冻土地温分析表明, 源区冻土年平均地温随海拔的变化梯度约为3.82 ℃·km-1, 且冻土地温与表层覆被条件关系密切. 盆地平原地带多年冻土厚度约为17~86 m, 且以海拔每上升100 m冻土厚度增加约10 m的梯度增加. 多年冻土活动层厚度受海拔地带性作用不显著, 更多地受局地因素的控制, 地表覆被条件成为其主要影响因素. 在气温升高以及人类活动日益增多的影响下, 源区冻土整体处于退化状态, 多年冻土年平均地温以0.0075 ℃·a-1的速率上升.  相似文献   

19.
针对青藏高原植被稀疏、土壤颗粒较粗糙的特征,基于Noah陆面过程模型(LSM),模拟了植被和土壤对整个高原多年冻土分布和关键属性特征(包括活动层厚度和年平均地温)的影响,并通过野外调查数据对模拟结果进行了评估。结果表明:在考虑稀疏植被和粗糙土壤后,改进的Noah LSM对青藏高原多年冻土分布和属性的模拟性能都有所改善;多年冻土面积由原始Noah模型模拟的1.216×106 km2减少到1.113×106 km2,模拟的空间差异主要出现在多年冻土与季节冻土的过渡区及高原南部的岛状多年冻土区;模拟的高原平均活动层厚度由原始Noah模型模拟的2.55 m增加到2.92 m,年平均地温也由-2.17℃增加到-1.65℃。总之,青藏高原稀疏植被和粗糙土壤对多年冻土有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号