首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Soils containing expansive clays undergo swelling that can be both detrimental and beneficial in various applications. In the Arabian Gulf coastal region, natural heterogeneous soils containing clay and sand (tills, shales, and clayey sands) support most of the civil infrastructure systems. Likewise, mixes of clay and sand are used for local earthwork construction such as roads and landfills. A clear understanding of the swelling behaviour of such soils is pivotal at the outset of all construction projects. The main objective of this paper was to understand the evolution of swelling with increasing clay content in local soils. A theoretical framework for clay–sand soils was developed using phase relationships. Laboratory investigations comprised of mineralogical composition and geotechnical index properties of the clay and sand and consistency limits, swelling potential, and morphology of clay–sand mixes. Results indicated that soil consistency of mixes of a local expansive clay and an engineered sand depends on the weighted average of the constituents. Mixes with 10% clay through 40% clay capture the transition from a sand-like behaviour to a clay-like behaviour. Influenced by the initial conditions and soil matrix, the swelling potential of the investigated mixes correlated well with soil plasticity (SP(%) = 0.16 (I p)1.188). The parameters sand void ratio and clay–water ratio were found to better explain the behaviour of blended clay–sand soils.  相似文献   

2.
Doan  L. V.  Lehane  B. M. 《Acta Geotechnica》2021,16(9):2877-2885

The paper presents observations made in CPTs performed under controlled laboratory conditions in normally consolidated clay–sand mixtures at various penetrations. These results are combined with data from field tests to develop a relationship for CPT data in young normally consolidated soils that combines end resistance and friction sleeve data. This relationship can be used to assist assessment of soil type and CPT parameters for un-aged normally consolidated soils as well as allowing judgements to be made in relation to likely levels of under-consolidation, structure and over-consolidation in any given soil deposit.

  相似文献   

3.
The theory of hypoplasticity was developed initially for non-cohesive soils. However, sand and clay have many common properties; therefore arose the idea to extend the hypoplastic model to clay. The proposed model is able to describe the behaviour of cohesive soils with the incorporation of an appropriate structure tensor into the constitutive equation. This tensor is a stress-like internal parameter, also called back stress. This enables us to describe the behaviour of cohesive soils with the same material parameters for several states of consolidation and also to model barotropy and pycnotropy of sand. Numerical simulations of element tests are performed in order to check the performance of this hypoplastic model. Experimental data obtained with normally and overconsolidated clay and sand specimens with various densities are taken for comparison, and it is shown that the model is capable of describing the material behaviour of clay and sand. The determination of the material constants, the calibration method, is also presented in this paper.  相似文献   

4.
5.
6.
The Saga Plain in Japan contains a 10–30 m thick Holocene clayey soil deposit with a natural water content generally more than 100% and a liquidity index (I L ) larger than 1.0. Most of this is a marine deposit known as the Ariake clay formation. Using salinity in the pore water of this deposit as an index, the mechanism of post-depositional salinity leaching from the Ariake clay formation has been investigated. This has been achieved using current measurements of the salinity distribution in the deposit and the groundwater flow velocity in an underlying Pleistocene gravelly sand layer, together with advection–diffusion analyses. It is suggested that diffusion together with possible rainfall percolation and/or upward seepage flow from the Pleistocene gravelly sand layer was the main mechanism causing salinity leaching. Detailed analysis of the test results from four boreholes indicates that for the locations where the activity of the clay minerals was less than 1.25, salinity leaching probably accounts for the observed low undrained shear strength (<0.5 kPa) of remoulded soil samples, high values of the sensitivity (S t ), and the formation of a quick clay.  相似文献   

7.
The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in vln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM. The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A number of constitutive models are nowadays implemented in numerical codes which simulate the stress–strain behaviour of soil from very small to large strain. In this paper, the mechanical behaviour of Leighton Buzzard sand (grade E), used worldwide for physical modelling, has been thoroughly characterized by laboratory testing along several stress paths. Tests were aimed at calibrating a constitutive model, that allows considering stiffness nonlinearities in a wide range of strains, in the framework of isotropically hardening plasticity. As a validation, the results of dynamic centrifuge tests on a layer of the same sand were compared with finite element predictions.  相似文献   

9.
This paper presents a general one-dimensional (1-D) finite element (FE) procedure for a highly non-linear 1-D elastic visco-plastic (1-D EVP) model proposed by Yin and Graham for consolidation analysis of layered clay soils. In formulating the 1-D FE procedure, a trapezoidal formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (modified Newton) iteration scheme. Unlike many other 1-D FE approaches in which the initial in situ stresses (or stress/strain states) are considered indirectly or even not considered, the initial in situ stress/strain states are taken into account directly in this paper. The proposed FE procedure is used for analysis of 1-D consolidation of a clay with published test results in the literature. The FE modelling results are in good agreement with the measured results. The FE model and procedure is then used to analyse the consolidation of a multi-layered clay soils with a parametric study on the effects of the variations of creep parameters in Yin and Graham's 1-D EVP model. It is found that the creep parameters ψ/V and t0 have significant influence on the compression and porewater pressure dissipation. For some boundary conditions, changes of parameters in one layer will have some effects on the consolidation behaviour of another layer due to the different consolidation rates. Finally, the importance of initial stress/strain states is illustrated and discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Two-dimensional finite element analysis has been used to find load–transfer relationships for translation of an infinitely long pile through undrained soil for a variety of soil-constitutive models. It has been shown that these load–transfer curves can be used as py curves in the analysis of single piles undergoing lateral pile head loading in undrained soils with non-linear stress–strain laws. Lateral pile response deduced from 2-D analysis input to the subgrade reaction method has been compared to the behaviour of a single pile analysed using three-dimensional finite element analysis. Good agreement between the two methods for non-linear soils suggests that the 2-D analysis may form a useful design method for calculation of py curves. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The engineering applications of energy piles, geological radioactive waste disposals, and mining wells of geothermal and petroleum are usually associated with strong coupled behaviour of consolidation and heat flow. This paper aims to present an efficient precise integration technique (PIT) for the analysis of such behaviour within layered saturated soils surrounding cylindrical heat sources (ie, with a cross section as a point, ring, or disc). Each soil layer, together with its embedded part of heat source, is divided into 2N layer elements with equal thickness. Then any pair of adjacent two layer elements are merged into a heat source on the interface. With the aid of Taylor series expansion and recurrence formula for adjacent layer elements combination, such problems can be solved by means of an improved PIT. Typical examples are performed to examine the effects of heat source type and soils layered properties on the coupled consolidation and heat flow responses. The elevation of the clay surface increases with time because of thermal expansion and reaches a peak value before showing a tendency of getting stabilised because of the dissipation of pore pressure becoming dominant. Such a peak cannot be achieved in sand case because of no accumulation of pore pressure. The influencing area of the heat source was found to be limited to near the source. These quantitative results serve as good verification of the presented technique, which proves to be remarkably efficient and several orders more accurate than traditional numerical techniques in that it ideally reaches the accuracy limit of the hardware of the computers used.  相似文献   

12.
Experimental and numerical investigations into the bearing capacity of circular footing on geogrid-reinforced compacted granular fill layer overlying on natural clay deposit have been conducted in this study. A total of 8 field tests were carried out using circular model rigid footing with a diameter of 0.30 m. 3D numerical analyses were performed to simulate soil behavior using finite element program Plaxis 3D Foundation. The results from the FE analysis are in very good agreement with the experimental observations. It is shown that the degree of improvement depends on thickness of granular fill layer and properties and configuration of geogrid layers. Parameters of the experimental and numerical analyses include depth of first reinforcement, vertical spacing of reinforcement layers. The results indicate that the use of geogrid-reinforced granular fill layers over natural clay soils has considerable effects on the bearing capacity and significantly reduces the lateral displacement and vertical displacement of the footing.  相似文献   

13.
The partitioning of different grain-size classes in gravity flow deposits is one of the key characteristics used to infer depositional processes. Turbidites have relatively clean sandstones with most of their clay deposited as part of a mudstone cap or as a distal mudstone layer, whereas sand-bearing debrites commonly comprise mixtures of sand grains and interstitial clay; hybrid event beds develop alternations of clean and dirty (clay-rich) sandstones in varying proportions. Analysis of co-genetic mudstone caps in terms of thickness and composition is a novel approach that can provide new insight into gravity flow depositional processes. Bed thickness data from the ponded Castagnola system show that turbidites contain more clay overall than do hybrid event beds. The Castagnola system is characterized by deposits of two very different petrographic types. Thanks to this duality, analyses of sandstone and mudstone composition allow inference of which proportion of the clay in each of the deposit types was acquired en route. In combination with standard sedimentological observations the new data allow insight into the likely characteristics of their parent flows. Clean turbidites were deposited by lower concentration, long duration, erosive, muddy turbidity currents which were more efficient at fractionating clay particles away from their basal layer. Hybrid event beds were deposited by shorter duration, higher-concentration, less-erosive sandier flows which were less efficient at clay fractionation. The results are consistent with data from other turbidite systems (for example, Marnoso-arenacea). The approach represents a new method to infer the controls on the degree of clay partitioning in gravity flow deposits.  相似文献   

14.
Feng  Wei-Qiang  Li  Chao  Yin  Jian-Hua  Chen  Jian  Liu  Kai 《Acta Geotechnica》2019,14(6):2065-2081

In most marine reclamation projects, sand fill is placed directly on soft marine seabed soils. The sand particles can easily penetrate into the soft marine soils, and the soft soil can also move into the pore spaces inside the sand at the initial contact interface between the sand and the soft marine soil. In this case, the permeability and the volume of the sand above the initial surface are reduced. To avoid this problem, a geotextile separator is often placed on the surface of the soft marine soils before placing the sand. In this study, a two-dimensional physical model is utilized to study the geotextile separator effects. The initial conditions of a clayey soil, sand fill, and surcharge loading were kept the same in the physical model test with the only difference being that a geotextile separator was either placed on the clay surface or omitted. The settlements of the initial interface were recorded and compared for the two cases without or with the geotextile separator. The particle size distribution of the soils taken across the interface zone for different time durations was then measured, analyzed, and compared. Based on an analysis of the results, the sand percolation depth was 40 mm and fine particle suffusion was apparent when the sand was placed directly on the marine slurry surface without a geotextile separator. However, when a geotextile separator was used sand percolation was avoided, and the fine particle suffusion was effectively diminished. A relative fine particle fraction is defined to illustrate the migration of fine particles from the clay to the sand soils. The fine particle percentages of the Hong Kong Marine Deposits–sand mixtures were calculated for the cases with and without a geotextile separator using an empirical formula and micromechanical modeling to obtain a better understanding of the effects of geotextile separators in practice.

  相似文献   

15.
Expansive soils exhibit large volume changes when their water content changes. Alternate heave and settlement due to seasonal climatic variations result in distress and damage in civil infrastructure systems. This research focuses on the understanding of swelling and shrinkage phenomenon in the surface layer of expansive soils. Undisturbed field samples were used to capture the effect of in situ conditions (geologically induced fissuring and environmentally caused saturation) on volume change properties of Regina clay. Based on laboratory investigations, the swelling potential and swelling pressure of the native clay at S = 82% were found to be 1.5% and 3.5 kPa, respectively. The swell-shrink path during progressive soil drying followed an S-shaped curve comprising of an initial low structural shrinkage followed by a sharp decline during normal shrinkage and then by a low decrease during residual shrinkage. The soil microstructure correlated well with the observed volume change behaviour as well as with the consistency limits. The presence of fissures in field samples at various degrees of saturation confirmed that the investigated deposit is at an equilibrium condition with respect to the swell-shrink phenomenon. The swelling properties at any initial saturation state were estimated using the free swelling test and the swell-shrink test data in conjunction. The swelling potential increased 12 times (from 2 to 24%) and the swelling pressure increased by two orders of magnitude (from 27 to 2500 kPa) with a change in the degree of saturation from 80% (at the plastic limit) to 60% (at the shrinkage limit).  相似文献   

16.
Swelling behavior of expansive soil has always created problems in the field of geotechnical engineering. Generally, the method used to assess the swelling potential of expansive soil from its plasticity index, shrinkage limit and colloidal content. Alternative way to evaluate swelling behavior is from its expansive index (EI) and swelling pressure value. The present study investigates the reduction of EI and swelling pressure for kaolinite and bentonite clay when mixed with various percentages of Ottawa sand and Class C fly ash. The percentages of Ottawa sand and Class C fly ash used were 0–50 % by weight. The results show that there is a significant reduction in the swelling properties of expansive soil with the addition of Ottawa sand and Class C fly ash. The reduction in EI ranged approximately from 10 to 50 and 4 to 49 % for kaolinite and bentonite clay, respectively. Also the maximum swelling pressure of kaolinite and bentonite clay decreased approximately 93 and 64 %, respectively with the addition of various percentages of Ottawa sand and Class C fly ash. Standard index properties test viz., liquid limit, plastic limit and linear shrinkage test were conducted to see the characteristics of expansive soil when mixed with less expansive sand and fly ash. Also, for these expansive soils one dimensional consolidation test have been conducted with sand and fly ash mixtures and the results were compared with pure kaolinite and bentonite clay.  相似文献   

17.
The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.  相似文献   

18.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
20.
3-D finite element modelling of pile groups adjacent to surcharge loads   总被引:9,自引:0,他引:9  
The short-term behaviour of pile groups subjected to lateral pressures by deformation of a clay layer under an adjacent surcharge load was studied using three dimensional finite element analysis. The main aim of the analysis was to investigate the pile-clay interaction behaviour. A load-path-dependent, non-linear constitutive model was used to describe the clay, which required knowledge of in situ stresses and recent strain history. Numerical results compared well with those from a centrifuge model test. The effects of the different in situ stresses and strains likely in prototypes and centrifuge model tests were also studied with particular interest in the load-transfer relationships and soil deformation behaviour around the piles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号