首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
周根郯 《水文》2021,41(4):8-12
成都黏土作为一种典型的膨胀土,具有很强的水敏性,其降雨入渗规律较复杂.结合现场试验和数值计算结果,分析不同降雨条件下的降雨入渗规律.研究表明:降雨入渗深度范围内大部为非饱和区,降雨入渗深度主要受降雨时长、孔隙率和基质吸力控制,降雨入渗饱和深度主要受降雨强度、孔隙率和饱和渗透系数控制,成都地区单日降雨情况下,降雨入渗深度...  相似文献   

2.
大量研究表明,主要且直接诱发边坡失稳的主要因数是降雨,雨水入渗对非饱和土质边坡稳定性的影响最大。分析非饱和黏土边坡基质吸力和渗流场影响,采用有限元软件FLAC2D建立非饱和黏土边坡的数值模型,研究计算在降雨强度不同条件下,降雨时间相同和降雨总量相同这两种情况对边坡稳定性的影响。结果表明:非饱和黏土边坡内部的剪应变增量随降雨强度的变大而增大,边坡的位移也和降雨强度呈正相关关系,降雨强度越大越容易造成黏土边坡表层失稳。  相似文献   

3.
降雨入渗条件下非饱和膨胀土边坡原位监测   总被引:40,自引:5,他引:40  
为了对降雨诱发的非饱和膨胀土边坡失稳的机理有较深入的了解,在湖北枣阳选取了一个11 m高的典型的非饱和膨胀土挖方边坡进行人工降雨模拟试验和原位综合监测。监测成果表明:降雨入渗造成2 m深度以内土层中孔隙水压力和含水量大幅度增加,致使膨胀土体的抗剪强度由于有效应力的减少及土体吸水膨胀软化而降低;同时,降雨入渗造成土体中水平应力与竖向应力比显著增加,并接近理论的极限状态应力比,以致软化的土体有可能沿着裂隙面发生局部被动破坏,此破裂面在一定条件下(如持续降雨条件下)可能会逐渐扩展,最后发展成为膨胀土中常见的渐进式滑坡。  相似文献   

4.
针对下蜀土边坡在实际降雨入渗条件下稳定性规律研究的不足,以镇江典型下蜀土边坡为研究对象,根据自动化监测获得的降雨入渗下的含水率变化数据,开展了降雨入渗条件下下蜀土抗剪强度演化规律的试验研究,获得了下蜀土在实际降雨入渗下的强度及降雨入渗深度特性,并以此为基础,基于有限元强度折减法分析了降雨入渗后下蜀土边坡的稳定性变化规律。研究结果表明:下蜀土的抗剪强度受含水率影响较大,同时存在一界限含水率,在该含水率左右的下蜀土强度特性不同;随着含水率的增加,下蜀土的黏聚力先小幅减小,而后急剧减小,最后再小幅减小并最终保持稳定;下蜀土的内摩擦角则为先急剧减小,再小幅减小并最终保持稳定;随着降雨渗入下蜀土边坡后,下蜀土边坡的安全系数近似呈线性趋势减小。研究结果可为下蜀土边坡的防护治理提供理论依据,具有实际工程意义。  相似文献   

5.
降雨入渗条件下边坡岩体饱和非饱和渗流计算   总被引:20,自引:2,他引:20  
荣冠  张伟  周创兵 《岩土力学》2005,26(10):1545-1550
简要分析了连续介质饱和非饱和渗流数学模型,并讨论了渗流有限元计算中的有关问题,同时研究了降雨入渗机理及模拟方法,在此基础上编写了非饱和渗流程序SUSC。运用该程序模拟了某边坡降雨过程渗流场的变化情况。计算结果表明,在降雨入渗作用下边坡顶部迅速被饱和,随后表面雨水逐渐向边坡深部下渗,形成从坡顶往深部压力水头等值线由高(零)→低→高的封闭现象。随着降雨的继续,边坡顶部负压区进一步缩小,且负压绝对值减小。降雨结束后,由于上部地下水的继续下渗,在边坡的一定范围、一定时间内压力水头继续升高。根据计算结果可知,局部地方的压力水头最高值出现在降雨结束2 d左右,往后整个边坡非饱和区地下水压力水头全面下降,逐渐恢复原状。模拟结果总体可靠,可作为边坡稳定性分析评价及边坡排水加固的参考依据。同时表明,运用上述饱和非饱和渗流模型及降雨模拟方法,计算降雨条件下边坡岩体的渗流场是可行的。  相似文献   

6.
刘子振  言志信 《岩土力学》2016,37(2):350-356
考虑非饱和黏土边坡的基质吸力和渗流力,根据水位线位于滑面上、下的临界平衡状态,分别建立了滑体条块极限平衡状态下力和力矩平衡式,获得了降雨条件下非饱和黏土边坡稳定性的极限平衡条分法计算式。通过试验、参量变换以及作用力的位置关系可以确定相关参量,并采用数值计算求解临界平衡状态下滑体条块的相互作用力系数和非饱和边坡安全系数。案例结果表明:考虑渗流力时的非饱和黏土边坡安全系数比不考虑渗流力的安全系数降低约13.8%,且考虑渗流力作用的条间力作用系数变化率明显大于不考虑渗流力的结果;当降雨强度超过一定值时,坡面径流很快形成,边坡出现不稳定的时间基本相同。  相似文献   

7.
黄土边坡的变形破坏多发生于降雨期间,由此也造成了大量的损失。为减小降雨诱发黄土滑坡的影响,开展降雨型滑坡现场实验研究,具有现实意义。本文选取泾阳一天然黄土边坡为研究对象,利用自行设计的模拟降雨系统,设计并进行了3组不同雨强下的大型黄土边坡人工模拟降雨试验,旨在研究不同雨强条件下天然黄土边坡的入渗规律及变形破坏模式。通过对边坡内埋设的土壤水分传感仪、土压力盒和张力计管的读数变化及试验现象进行分析,进而得出降雨条件下大型黄土边坡现场试验的变形破坏规律,总结出该类边坡的水分入渗规律和变形破坏模式。试验结果表明,边坡入渗呈现一定的规律:降雨条件下,坡肩入渗深度和速率最大,坡脚次之,坡面最小;同时,降雨强度越大,雨水入渗速率越快,入渗时间越长,边坡相同位置处体积含水率和土压力增大幅度越大,基质吸力减小的幅度越大。降雨条件下天然黄土边坡的变形破坏模式为:坡肩侵蚀及侵蚀扩展→坡面裂隙形成扩展→坡肩裂隙形成扩展→局部滑塌;若继续降雨,则坡肩局部裂隙逐渐贯通进而形成滑面,最终导致滑坡发生。  相似文献   

8.
黄土边坡的失稳问题是岩土工程中迫切需要解决的工程难题之一。首先,选取陕北黄土边坡为研究对象,开展4种雨强条件下的野外人工模拟降雨试验,通过测试边坡两侧开挖隔离槽并埋设隔离布从而改进测试边坡两侧的边界条件,实测不同雨强条件下边坡浸水深度以及土体含水率变化;然后分析不同雨强条件下降雨入渗过程和边坡应力变化特征,并比较不同雨强条件下入渗规律之间的差异。试验结果表明,不同雨强条件下的黄土边坡入渗深度均呈现坡脚最深、坡顶次之、坡中最浅的规律,入渗速率则是坡顶最快,其次是坡脚,最后是坡中;且随着深度的增加,雨水入渗能力逐渐减弱。随着雨强的增大,同一埋深处测点的体积含水率及土压力变化幅值变大,且含水率及土压力突变时间相应缩短,边坡的冲刷效果愈加明显。最后基于Geo-studio软件进行渗流分析,验证了现场试验结果的正确性,明晰了雨强对黄土边坡降雨入渗的影响。  相似文献   

9.
10.
义马煤业集团股份有限公司所属综能公司在建场地中部有一20m高矿渣边坡,矿渣为三叠系砂岩、泥岩,堆积至今已有10~50a。该边坡整体属软质岩石,多全风化土状和强风化状,砂岩碎块手刻可碎,结构疏松、分选性差、粒间结合力弱、透水性强。虽经强夯处理,但在2010年雨季期间在边坡中下部仍出现多处滑塌。为研究该高填强夯矿渣边坡在降雨入渗下的变形特征和滑坡机理,借助于弹塑性力学有限元和非饱和渗流力学等理论,建立了高填矿渣边坡的位移场-非饱和渗流场耦合数值模型,详细分析了降雨入渗条件下边坡的位移场、渗流压力分布、体积含水量和安全系数等特点。研究结果表明:随着降雨的持续进行,高填强夯矿渣边坡安全系数大幅降低; 强夯后边坡渗透性降低,渗流正压集中于坡顶一定深度范围内,且随着降雨的持续进行,渗流正压逐渐增加至稳定,负压值基本保持不变,但负压区逐渐缩小,表明负压对强夯矿渣边坡的影响有限,重点是做好该类边坡坡顶一定深度范围内的排水措施,以消减渗流正压; 正压区体积含水量上升至饱和状态; 持续降雨条件下坡脚出现剪切破坏,导致边坡中下部出现滑塌。其研究成果对于矿山矸石山边坡、尾矿坝、高填碎石土路基等渣土混合边坡稳定性研究有重要借鉴意义。  相似文献   

11.
强降雨作用下基岩型层状边坡易发生失稳破坏,给人们生命财产造成重大损失。为探索基岩型层状边坡的降雨入渗过程,以Green-Ampt入渗模型为基础,考虑了边坡几何特征及饱和带渗流作用,得到了边坡不同入渗阶段入渗率和湿润峰深度的计算式,建立了适用于基岩型层状边坡的降雨入渗计算模型;在分析基岩型层状边坡稳定性时,考虑了饱和带的渗流作用,联合降雨入渗模型与极限平衡法,分析了基岩面与湿润峰面稳定性的变化规律,得到了计算基岩型层状边坡安全系数的解析表达式;结果表明,该模型的计算与试验结果具有一致性。利用该计算模型与传统计算方法对张家湾滑坡进行了强度为30 mm/h的降雨入渗与稳定性分析,得到了不同计算方法下张家湾滑坡湿润峰深度及安全系数随降雨历时增加而发生的变化规律,结果表明该计算模型在分析基岩型层状边坡稳定性时优于传统分析方法。  相似文献   

12.
胡明鉴  汪稔  孟庆山  刘观仕 《岩土力学》2006,27(9):1549-1553
砾石土因其级配宽、不均匀系数大、透水性强等特点在工程防渗中得到广泛的应用,其强度和力学性质受粗细粒含量和粒间咬合程度、黏接状态等影响。通过人工降雨原型试验、模型试验、室内试验及理论分析,研究松散砾石土斜坡在降雨作用下坡面土体的形态特征和土体性状的变化以及斜坡稳定性和该过程中可能出现的临界状态,探索坡面松散砾石土触变液化的过程和机理。试验结果表明,砾石土斜坡在降雨过程中,坡面土体形态、坡面径流泥沙含量具有阶段性特性;各典型现象土体含水量分布具有区段性;土体强度和斜坡稳定性随着土体含水量的增加均存在明显的临界特征。  相似文献   

13.
降雨条件下坡面径流和入渗耦合的数值模拟   总被引:6,自引:2,他引:6  
降雨条件下坡面径流和降雨入渗的模拟互为条件,必须采用耦合分析的方法才能较好地解决这一问题。从坡面径流和降雨入渗控制方程着手,建立了用有限元方法求解该问题的耦合方程,并编制了相应的计算程序。为了加快迭代收敛的速度,还对地表饱和的判断提出了一种近似处理的方法。算例表明,所提出的方法可行,能较好地反映实际现象。该方法可为边(滑)坡稳定、水土流失、山地洪水分析等提供计算依据。  相似文献   

14.
粘性土抗剪强度在基坑支护设计中的应用   总被引:1,自引:0,他引:1  
针对基坑支护设计中粘性土抗剪强度取值不精确问题,在分析粘性土抗剪强度特征的基础上,提出了应用折算系数法对抗剪强度取值的理论,并以长春市超固结粘性土为例,进行了实际计算和应用,取得了较好效果。  相似文献   

15.
Wang  Yixuan  Chai  Junrui  Cao  Jing  Qin  Yuan  Xu  Zengguang  Zhang  Xianwei 《Natural Hazards》2020,102(3):1269-1278
Natural Hazards - The seepage and stability of unsaturated soil slopes under torrential rain conditions are key issues in geotechnical and hydraulic engineering. In this work, based on...  相似文献   

16.
降雨条件下土坡饱和-非饱和渗流分析   总被引:19,自引:3,他引:19  
谭新  陈善雄  杨明 《岩土力学》2003,24(3):381-384
分析了降雨入渗的过程,提出了降雨概念模型:讨论了如何用饱和-非饱和渗流数值方法分析边坡在不同雨型下的渗流场;分析结果表明:雨水入渗过程受初始渗流场影响很大,初始含水量的大小影响湿润锋的推进。暴雨情形下,雨水入渗缓慢,浅部土体保持一定吸力,雨停后渗流场仍有较大变化。  相似文献   

17.
李明  张嘎  张建民  李焯芬 《岩土力学》2011,32(Z1):185-189
工程中经常遇到边坡中含有夹层的情况,对含夹层边坡的稳定性研究很有意义。目前的研究多着重于含夹层岩质边坡的稳定性,对土质边坡涉及较少,尚无系统的试验分析。开挖条件下含夹层土质边坡更容易发生破坏,对其破坏模式的正确认知有助于对其稳定性进行合理的安全评价。进行了含水平砂土夹层边坡开挖的离心模型试验,夹层位于边坡中部。通过与边界和试验条件相同的素土边坡进行对比,分析了中部夹砂层边坡开挖后的破坏模式。试验结果表明,中部砂土夹层的存在降低了边坡在开挖后的稳定性,且其下边界是边坡破坏的薄弱控制面  相似文献   

18.
红砂岩广泛分布于我国南方地区,因强度低、胶结程度差,且含有一定的膨胀性黏土矿物,此类岩石受水影响易发生崩解,从而易诱发多种地质灾害。选取湖南株洲地区的微膨胀红砂岩进行静态与扰动崩解试验,采用耐崩解性指数、标准基础熵、崩解比和分形维数等作为评价红砂岩崩解特性指标,探讨了烘干温度、试块质量、外界扰动和干湿循环作用等因素对红砂岩崩解特性的影响。研究结果表明,静态崩解方式下,相比于105 ℃和30 ℃,60 ℃的烘干温度更利于岩样崩解。而扰动崩解下,烘干温度对红砂岩崩解的影响几乎可以忽略不计。在烘干温度、试块质量等因素不变的情况下,外界扰动对红砂岩崩解特性存在显著影响。试块质量对红砂岩崩解特性存在一定的影响,试块质量越大,红砂岩崩解速率越快。干湿循环作用对红砂岩崩解的影响十分显著,随着循环次数增加,红砂岩的崩解破碎程度逐渐加大。  相似文献   

19.
《岩土力学》2016,(7):2119-2127
针对顺层边坡降雨模型试验中的监测元器件易失效和支挡结构受力测试困难等问题,尝试采用光纤光栅技术解决以上问题。在推导不同光纤光栅传感器测试原理公式的基础上,结合光纤布拉格光栅(FBG)自主研发了相应的测试元件。在前期研究的基础上,分别构建倾角为40°的有、无支挡顺层边坡开展降雨模型试验,并对坡体位移、框架锚杆和抗滑桩受力等物理力学量的降雨发展特征开展监测。结果表明,基于光纤光栅技术的测试元器件在降雨等恶劣工作环境下仍能够保持较好的工作特性。在降雨过程中大倾角无支挡顺层边坡易发生层间错动现象,但对其施加支挡结构之后,不仅位移变化模式由陡变型转化为缓变型,且层间错动现象得到了控制。降雨过程中边坡支挡结构内力增长速率较快位置由后部逐渐向前部及深部转移,雨后顶层框锚结构内力增长不大,底层锚杆和抗滑桩内力在雨后仍有一定幅度的增长,且在降雨结束后2 h左右才达到稳定状态,可据此确定降雨工况下顺层边坡重点监控的部位及时间。研究成果为顺层边坡模型试验监测及降雨工作特性评估提供了新的思路和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号