首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered structure of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is presented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

2.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urbanarea in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered struc-ture of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heightsand morning boundary layer development are combined with surface eddy correlation measurements of kinematic heatand moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is pres-ented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed duringthe transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

3.
Using the sounding data of wind, temperature, and humidity in the boundary layer and micrometeorological data on the earth's surface observed in the same period in Dunhuang arid region of Northwest China,this paper researches characteristics of potential temperature, wind, and humidity profiles, confirms the structure and depth of thermodynamic boundary layer in Dunhuang region, and analyzses the relationship of depth of thermodynamic boundary layer with surface radiation, buoyancy flux as well as wind speed and wind direction shear in the boundary layer. The results show that the maximum depth of diurnal convective boundary layer is basically above 2000 m during the observational period, many times even in excess of 3000 m and sometimes up to 4000 m; the depth of nocturnal stable boundary layer basically maintains within a range of 1000-1500 m. As a whole, the depth of atmospheric boundary layer is obviously bigger than those results observed in other regions before. By analyzing, a preliminary judgement is that the depth of atmospheric thermodynamic boundary layer in Dunhuang region may relate to local especial radiation characteristics, surface properties (soil moisture content and heat capacity) as well as wind velocity shear of boundary layer, and these properties have formed strong buoyancy flux and dynamic forcing in a local region which are fundamental causes for producing a super deep atmospheric boundary layer.  相似文献   

4.
Turbulence measurements of the vertical velocity component were obtained by an instrumented aircraft under fair weather conditions in the St. Louis, Missouri, metropolitan area. Time series of vertical velocity fluctuations from horizontal flight segments made in the lower part of and near the middle of the convective boundary layer (CBL) over the urban area and surrounding region were subjected to various statistical and objective analyses. Higher order vertical velocity moments, and positive and negative velocity statistics, were computed. The horizontal dimensions of updrafts and downdrafts, and related properties of these turbulent eddies were derived by conditional sampling analysis. Emphasis is on a comparison of the results from urban and selected rural measurements from the lower part of the CBL.The vertical velocity probability density distribution for each segment was positively skewed and the mode was negative. The means and standard deviations of positive and negative velocity fluctuations were greater over the urban area. The urban vertical velocity variance was 50% greater than rural values, and power spectra revealed greater production of vertical turbulent energy in the urban area over a wide frequency range.The mean and maximum widths of downdrafts were generally larger than the corresponding values for updrafts. Differences between urban and rural eddy sizes were not statistically significant. The widths of the largest updraft and downdraft are comparable to the boundary-layer depth, Z i, and the mean value of the ratio of spectral peak wavelength to Z iwas about 1.3 and 1.1 for urban and rural areas, respectively. Convective similarity scaling parameters appeared to order both the urban and rural measurements.On assignment from the National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.  相似文献   

5.
为了研究成都地区城市化对当地气候的影响,利用不同时期的下垫面土地利用类型数据和耦合单层城市冠层模型(UCM)的WRF(Weather Research and Forecasting)模式对成都夏季和冬季城市化效应进行了模拟研究,得到以下主要结论:1)成都地区城市化使夏季城区上空出现增温区域。城区地表气温升高约2.8°C,边界层高度升高约150 m,冬季地表气温平均升高约0.6°C,边界层高度升高约25 m。夏冬两季气温日较差均减小。2)受城市化影响,成都地区夏季和冬季2 m相对湿度减小,感热通量增加,潜热通量减小,且夏季变化程度强于冬季。3)城市化使地表的粗糙度增加,进而使夏季和冬季风速在城区减小,减小约0.1~0.6 m s?1,但夏季风速减小区域较冬季更大。城市化还使城市上空低层散度减小,辐合作用增强,垂直速度增大,夏季水汽往高层输送明显。4)夏季,城市化作用使日平均和白天时段降水量在城区的迎风区和下风区均增加,夜间降水量在下风区域增加,对迎风区域影响不明显。  相似文献   

6.
A new Canadian numerical urban modelling system has been developed at the Meteorological Service of Canada to represent surface and boundary-layer processes in the urban environment. In this system, urban covers are taken into account by including the Town Energy Balance urban-canopy parameterization scheme in the Global Environmental Multiscale meteorological model. The new modelling system is run at 250-m grid size for two intensive observational periods of the Joint Urban 2003 experiment that was held in Oklahoma City, U.S.A. An extensive evaluation against near-surface and upper-air observations has been performed. The Town Energy Balance scheme correctly simulates the urban micro-climate, more particularly the positive nighttime urban heat island, and also reproduces the “cool” island during the morning but does not succeed in maintaining it during all of the daytime period. The vertical structure of the boundary layer above the city is reasonably well simulated, but the simulation of the nocturnal boundary layer is difficult, due to the complex interaction with the nighttime southerly low-level jet that crosses the domain. Sensitivity tests reveal that the daytime convective boundary layer is mainly driven by dry soil conditions in and around Oklahoma City and that the nighttime low-level jet reinforces the urban heat island in the first 300m through large-scale advection, leading to the development of a less stable layer above the city.  相似文献   

7.
城乡过渡地带低空温度平流和边界层特征的观测分析   总被引:4,自引:0,他引:4  
利用兰州河谷盆地城乡过渡区边界层观测资料,分析了该地区的温度平流和边界层特征。分析表明:(1)夜间热岛环流明显,白天则较弱;(2)夜间200m高度以下有较强的冷平流,在250~400m高度有较弱的暖平流,冷暖温度平流对测点上空边界层温度和层结变化有显著影响;(3)由声雷达确定的夜间边界层高度对应于Ri<1.0的高度,在这一高度范围内存在逆位温和强的风切变。本地区下垫面和复杂的地形导致夜间边界层高度随时间周期性地升高和降低,变化周期约3h。  相似文献   

8.
1. Introduction The urban canopy layer (UCL) (Roth, 2000) is defined as a layer in the vertical structure of urban boundary layer (UBL) ranging from the surface to the top of buildings. The urban infrastructures within UCL, such as buildings with different heights, the het- erogeneity of urban land cover and the anthropogenic activity, all directly influence the thermal and dynam- ical structures of atmosphere and net radiation budget at the surface, meanwhile, affect the structure of ur- …  相似文献   

9.
For the heterogeneous site described in the first part, some aspects of the turbulent structure of the planetary boundary layer are studied. Using mixed-layer scaling, the normalized profiles are compared with those obtained over flat terrain during convective conditions. The measurements were made with the same instrumented aircraft at both sites. The dissipative and spectral length scales are smaller over complex terrain within the whole boundary layer. This is due to the shifting of the wavelength peak toward the high frequencies by dynamic turbulence.This last effect can also explain the increase of the dissipation rate over the heterogeneous site during strong wind conditions. The vertical profiles of sensible heat flux and temperature-water vapor correlation show a lack of entrainment process at the top of the boundary layer. This fact suggests that the investigated boundary layer is advected from the neighbouring plain over the complex site (plateau de Lannemezan).  相似文献   

10.
The role of thermals in the convective boundary layer   总被引:1,自引:0,他引:1  
Detailed measurements of the structure of thermals throughout the convective boundary layer were obtained from the NCAR Electra aircraft over the ocean during the Air Mass Transformation Experiment (AMTEX). Humidity was used as an indicator of thermals. The variables were first high-pass filtered with a 5 km cutoff digital filter to eliminate mesoscale variations. Segments of the 5 min (30 km length) horizontal flight legs with humidity greater than half the standard deviation of humidity fluctuations for that leg were defined as thermals. This was found to be a better indicator of thermals than temperature in the upper part of the boundary layer since the temperature in a thermal is cooler than its environment in the upper part of the boundary layer. Using mixed-layer scaling, the normalized length and number of thermals were found to scale with the 1/3 and -1/3 powers, respectively, of normalized height, while vertical velocity and temperature scaled according to similarity predictions in the free convection region of the surface layer. The observational results presented here extend throughout the entire mixed layer. Using these results in the equation for mean updraft velocity of a field of thermals, the sum of the vertical pressure gradient and edge-effect terms can be estimated. This residual term is found to be important throughout most of the boundary layer. The magnitude of the divergence of vertical velocity variance within a thermal is found to be larger than the magnitude of the mean updraft velocity term throughout most of the mixed layer.Part of this work was completed while visiting Risø National Laboratory, Denmark.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
The paper describes some aspects of the convective boundary-layer structure based on simultaneous sodar and tethersonde measurements during a field experiment in the urban area of Milan in the period 8 to 20 February, 1993. During this period, fog episodes and strong low-level elevated inversions (with lower boundaries < 400 m) were observed most of the time. A close agreement in the mixing height values, derived from the sodar and tethersonde profiles, has been achieved under these conditions. The validity of the similarity relationships, which have been originally derived to describe the vertical velocity variance and heat flux profiles over horizontally homogeneous terrain under quasi-stationary conditions, was evaluated when applied to the urban boundary layer.  相似文献   

12.
Summary The development of a convective boundary layer over the Antarctic Plateau is documented by a Doppler minisodar data-set recorded during a 10 day campaign in January 1997. The vertical velocities associated with thermals do not exceed 1 m/s, while the depth of the convective layer, usually less than 200 m, never surpasses 300 m. Measurements of momentum flux, sensible heat flux, wind speed and radiation budget show characteristics that are typical of a convective boundary layer evolution. The diurnal behaviour of absolute humidity, however, exhibits features that are not expected, e.g. anticorrelation with incoming net radiation and air temperature. Received October 30, 1998 Revised May 26, 1999  相似文献   

13.
北京冬季城市边界层结构形成机制的初步数值研究   总被引:7,自引:1,他引:6  
利用耦合了城市冠层参数化方案的MM5模式对2001年冬季北京地区一次典型的城市边界层过程进行成功模拟的基础上,对北京城市化作用、周边地形以及城市化进程发展对城市边界层结构的影响等问题进行了一系列的数值模拟试验。城市化作用的因子分离试验发现,城市化的总体作用即城市下垫面结构对大气热力及动力的综合影响导致了北京冬季城市边界层结构主要特征的形成。此外,揭示了城市结构的不同影响因子———动力因子、热力因子和热动力因子间的相互作用在北京冬季城市边界层结构形成和演变过程中的不同作用。在夜间,城市结构的动力因子对于城市边界层主要特征如市区悬浮逆温、近地层中小的风速及较强的湍流动能等的形成起着主导作用;在白天,城市结构的热力因子则成为影响市区混合层强度以及湍流运动特征等边界层结构的主导因素;热、动力因子间的相互作用对城市边界层结构的形成和演变也有着重要作用,但其影响特征比较复杂。北京周边地形作用的敏感性试验的结果表明,北京周边的特殊地形条件对城市边界层热力结构特征如悬浮逆温层及城市热岛等的结构及分布特征的形成也有着明显的影响,使其具有特殊的局地化特征,同时,它也是北京地区近地层主要气流特征的强迫源。不同城市化程度的敏感性试验结果揭示,随着北京城市建筑高度和密度的增加,市区风速将减小、湍流动能将加强,夜间城市悬浮逆温层底的高度会有所提高,城市热岛的强度也将加强,并可能在白天出现比较明显的城市热岛效应。  相似文献   

14.
Effects of wind on quasi-steady, shallow convection in the Martian boundary layer are studied using a large-eddy simulation model. Convection in the model is generated by the radiative flux divergence and the strength of the surface heat flux, which do not vary in time. The resulting convective boundary layer exhibits transient, irregular, horizontal cellular structures, transported by wind, and a lack of well-pronounced regular horizontal rolls, observed for analogous conditions on Earth. The dimensionless statistics of turbulence are generally similar to those generated in the windless conditions, and depend on the ratio F, defined in terms of the integrated radiative and turbulent heating rates in the boundary layer. The simulations show that variations of the radiative heating influence the temperature statistics, while their effects on the wind velocity are relatively small. The horizontal velocity variances do not show a strong dependence on parameter F, in contrast with the vertical velocity variances, which are strongly dependent on F.  相似文献   

15.
Observations from an instrumented aircraft are used to study the small-scale structure of turbulence and convection in well-mixed boundary layers and the erosion processes in the nocturnally-formed inversions above them. The ways in which turbulence statistics for temperature, humidity and vertical velocity scale with height in the mixed layer are compared with the results of a three-dimensional model by Deardorff (1974a, b), and agreement is found in many aspects. Conditional sampling enables the statistics of thermals and their environment to be considered separately and, in particular, shows that the mode of the vertical velocity in thermals markedly decreases with height in the upper half of the mixed layer. Thermals may be recognized equally readily by either their excess of temperature or humidity. Transfers of heat and moisture through the nocturnal inversions influence the structure of the upper region of the mixed layer and there is strong evidence that these transfer processes are turbulent and not organized on scales similar to convective thermals.  相似文献   

16.
The vertical wind profiles determined by Doppler sodar and the water vapourmixing ratio profiles obtained by Raman lidar are used to estimate the atmosphericwater vapour flux profiles in the nocturnal urban boundary layer under unstableconditions. The experiment was conducted for several nights in the central areaof Rome under a variety of moisture conditions and different urban boundary-layerflow regimes. Despite some scatter in the profiles, the latent heat flux is found tobe positive throughout the depth of the nocturnal urban boundary-layer. Thelayer-averaged flux shows a variation between -4 to +40 W m-2, whileindividual values of flux in excess of +150 W m-2 pertain to a case offree convection during cold air advection caused by the sea breeze. The qualityof flux estimates is found to be highly limited by the low sampling rates employedin the experiment resulting in errors to the order of 60%. Therefore, the results mustbe viewed as estimates rather than precise measurements. The skewness profiles ofthe turbulent fluctuations of vertical velocity and water vapour mixing ratio are alsopositive.  相似文献   

17.
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.  相似文献   

18.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

19.
Summary The effects of atmospheric boundary-layer stability on urban heat island-induced circulation are numerically and theoretically investigated using a nonlinear numerical model (ARPS) and a two-layer linear analytical model. Numerical model simulations show that as the boundary layer becomes less stable, a downwind updraft cell induced by the urban heat island strengthens. It is also shown that as the boundary layer becomes less stable, both the height of the maximum updraft velocity and the vertical extent of the downwind updraft cell increase. Hence, in the daytime with a nearly neutral or less stable boundary layer the urban heat island-induced circulation can become strong, even though the urban heat island is weak. It is suggested that these findings can be a mechanism for urban-induced thunderstorms observed in the late afternoon or evening with a nearly neutral or less stable boundary layer. The boundary-layer stability affects the spatial distribution of scalar concentration through its influencing urban heat island-induced circulation. Analytical results from a two-layer model with different boundary-layer stabilities in the lower and upper layers are in general qualitatively consistent with the numerical simulation results, although the low-level maximum vertical velocity does not change monotonically with lower-layer stability.  相似文献   

20.
An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers.Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time.The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号