首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于eCognition的遥感图像面向对象分类方法研究   总被引:1,自引:0,他引:1  
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像。本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类。并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价。结果表明:面向对象分类方法精度更高,更具有可靠性。  相似文献   

2.
提出了一种基于区域生长方法的分割参数选择方案,从各个类别的训练样区中提取分割参数信息。通过一系列的影像区域分割,计算得出一个最大的目标函数值,为每个类别推演出最佳分割参数;在单个类别参数影像分割和分类的基础上,融合所有处理结果,最后完成影像分类。实验验证了所提出方法的有效性。  相似文献   

3.
阎平  王刚 《北京测绘》2020,(4):575-579
面向对象的遥感分类方法是影像分辨率越来越高的背景下的产物。本文以某特高压输电线路工程为研究对象,选取宁夏、陕西、山西、河南、安徽境内五个典型地区样本,通过影像特征分析、多尺度分割和地物分类建立了水体、建筑、林地、道路等四种典型地物的分类规则集,并对工程全线进行信息提取和精度分析。结果表明:利用面向对象的方法提取高分辨率航空影像地表信息能够为输电线路智能选线快速提供基础地理空间数据。  相似文献   

4.
面向对象的遥感影像模糊分类方法研究   总被引:5,自引:0,他引:5  
郑文娟 《北京测绘》2009,(3):18-21,68
传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。本文采用面向对象的影像分类方法,考虑了对象的不同特征值,例如光谱值,形状和纹理,结合上下文关系和语义的信息,这种分类技术不仅能够使用影像属性,而且能够利用不同影像对象之间的空间关系。在对诸多对象进行分类后,再进行精度分析。在此研究提出了一种面向对象的方法结合模糊理论把许多的对象块分成不同的类别。这一过程主要有两个步骤:第一个步骤是分割。图像分割将整个图像分割成若干个对象,在这个过程中,分割尺度的选择会影响到后续的分类结果和精度。第二个步骤是分类。在这个步骤中,特征值的选择和隶属度函数的选择都对分类结果有着至关重要的影响。  相似文献   

5.
针对水库地区开展的高分辨率影像地物信息提取研究少而需求大以及面向对象的影像分割尺度选择难问题,基于SPOT7高分辨率卫星影像数据,选取广东省湛江市鹤地水库作为研究区域,提出一种针对高分辨率影像的最优分割尺度选择以及针对水库地区的典型地物模糊分类规则构建方法,成功实现水体、植被、裸土、建成区的快速准确提取。结果表明:通过引入局部方差变量和Moran’I指数并结合最小风险贝叶斯决策原则能直观、准确、唯一地识别最佳空间分割尺度;通过分析光谱和纹理特征发现,水体和植被的光谱特征显著,建成区的纹理特征表现突出,而裸土单靠光谱特征不足以辨识,需要纹理特征的辅助;针对典型地物构建的模糊规则分类效果整体良好,总体精度达到了90.8%,Kappa系数为0.884。本研究有助于水库管理部门、国土资源调查部门快速、动态地把握库区的整体用地情况。  相似文献   

6.
作为横跨3个国家(尼泊尔、印度、中国)的国际跨界河流———柯西河流域,地形高差巨大,土地覆被结构组成复杂,进行土地覆被的自动分类研究具有典型意义。基于面向对象方法多源遥感数据、训练规则、丰富的细节信息为复杂土地覆被自动分类研究提供了可能。选择合适的影像分割特征和最优分割尺度,按照数据挖掘中的规则顺序逐步进行各个土地覆被的提取。总体精度说明分类结果与野外点相一致的概率能达到90.05%,说明国际跨界河流土地覆被分类方法是可行的,分类结果是准确、可信的。  相似文献   

7.
面向对象的高分辨率影像农用地分类   总被引:5,自引:0,他引:5  
采用面向对象的影像分类方法,结合多尺度分割技术,以QuickBird影像为实验数据,进行农用地的精细自动分类。首先,根据地物大小,选择最优分割尺度,构建多尺度分割等级网;然后,综合利用高分辨率影像的光谱信息、纹理和形状特征,建立各个对象的特征集;最后,通过目视解译建立隶属度函数,实现地物的分层提取。实验表明,该方法能有效区分农作物种类,相对于传统的像素级分类方法,该方法明显提高了高分辨率影像的分类精度,且避免了"椒盐"噪声的产生。  相似文献   

8.
基于面向对象的珲春地区高分辨率遥感影像分类研究   总被引:1,自引:0,他引:1  
以吉林省珲春市春化镇为研究区,以Pleiades、高分一号、资源三号影像为实验数据,利用面向对象信息提取方法实现了对3种遥感影像进行信息提取。利用3D Filter边缘检测算子对多尺度分割进行优化,通过对影像进行多次实验得出地物要素的最优分割参数,并且建立不同地物要素的分割层级。分析实验数据的特点构建了合理的分类层级,选取能区分各个地物要素的特征进行组合,利用阈值分类和模糊分类实现地物要素的信息提取。利用混淆矩阵对数据进行客观分析,得到3种影像的总体分类精度和kappa系数。分析结果表明:Pleiades影像分类精度较高,更适合本实验区的遥感影像信息提取。  相似文献   

9.
以位于印度尼西亚Kalimantan热带雨林地区的1幅具有3个通道的雷达图像为研究对象,利用面向对象方法对高分辨率遥感影像的水体进行提取,在分割的基础上,经过分层分类,充分利用影像的光谱信息、拓扑信息、形状特征等构建知识库进行分类,实验结果理想,相对传统基于像素的图像分类分析方法结果图斑完整,提高了分类精度。  相似文献   

10.
由于高光谱影像的数据维数高,利用常规方法难以获得令人满意的分类结果。在基于信息融合的图像处理过程中,利用影像多特征融合信息进行面向对象的遥感图像分类,可有效降低原始图像数据维,提高分类精度。  相似文献   

11.
面向对象的高空间分辨率影像分类研究   总被引:2,自引:0,他引:2  
采用面向对象遥感影像分类方法,进行了高空间分辨率遥感影像信息提取试验,分析了其与基于像元方法的信息提取结果的差异,试验研究表明,在目视效果上,传统方法的分类结果图中椒盐现象非常明显,而面向对象方法可以有效地避免椒盐现象;在分类精度上,面向对象方法分类结果的总体精度、Kappa系数、生产者精度、用户精度、Hellden精度和Short精度均明显高于传统方法,各类地物提取效果显著提高。面向对象方法在高空间分辨率遥感影像信息提取中具有明显的优势。  相似文献   

12.
一种面向对象的TM影像的居民地提取方法   总被引:2,自引:0,他引:2  
提出了一种面向对象的TM影像的居民地提取方法,利用对象的光谱信息及其几何特征和空间信息识别居民地,实现了TM影像的居民地提取,结果表明这一方法效果很好。  相似文献   

13.
提出了一种基于改进后的Kohonen自组织特征映射神经网络的聚类方法,应用于多光谱遥感影像分类处理,试验证明其分类精度有较大提高。  相似文献   

14.
提出了一种基于权重与混合像元模型的遥感图像分类方法。该方法在现有光谱混合模型的基础上,根据实际应用需要确定地类权重,通过地类丰度与权重因子加权平均确定像元的隶属类型,从而实现遥感图像分类。以SPOT-5土地覆盖遥感分类为例,对权重与混合像元模型结合的图像分类方法进行了验证,结果表明,该方法提高了遥感图像分类精度,在一定条件下更具实际意义。  相似文献   

15.
基于逻辑斯蒂模型的遥感图像分类   总被引:4,自引:0,他引:4  
逻辑斯蒂法是一种非线性的回归分析方法,因采用逻辑斯蒂模型而得名[1],可用来进行未知单元类别属性的预测和判定。不同于一般的分类方法,它可分别给出某一单元属于各已知类别的概率,进而对研究的未知区中所有单元进行分类和预测。本文首先阐述了该方法的基本原理,而后利用它对内蒙古自治区两个研究区的两种图像数据进行了分类,最后探讨了影响该方法用于遥感图像分类的几个因素.  相似文献   

16.
李伟 《北京测绘》2013,(1):11-15,30
通过分析传统的遥感变化检测方法存在的问题,提出了面向对象的遥感变化检测方法。本文利用某地ETM+两个时相的遥感影像,将面向对象和传统变化检测方法进行定性定量的比较,从而得出面向对象的遥感变化检测方法的优势。该方法采用了基于相邻影像区域合并异质性最小的面向对象的多尺度分割方法和模糊分类的方法对变化检测图像进行处理,从而提高了变化检测结果的精度。最终得到较理想的实验分析结果。  相似文献   

17.
基于小波变换特征的遥感地貌影像纹理分析和分类   总被引:21,自引:1,他引:21  
朱长青  杨启和 《测绘学报》1996,25(4):252-256
本文基于图像的正交小波变换特征,研究了遥感地貌纹理影像的特征提取和分类方法,并对25幅地貌影像进行了分类。结果表明,所述方法不仅对同一分辨率的影像有较高的分类正确率,而且对不同分辨率的影像也有较高的分类正确率,同时对训练样本和考试样本来自不同母体的影像也有较高的分类正确率。  相似文献   

18.
概率神经网络与BP网络模型在遥感图像分类中的对比研究   总被引:6,自引:0,他引:6  
通过分析概率神经网络(以下称PNN)的基本结构及其训练算法,建立了卫星图像分类的概率神经网络模型,并通过实例对比分析了概率神经网络与BP网络分类模型的分类效果。实验表明,PNN图像分类方法在分类精度上优于误差反向传播神经网络模型,且分类时间相当,是一种有效的图像分类方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号