首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   

2.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   

3.
Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden–Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20–100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean–atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.  相似文献   

4.
The evolution of El Ni?o-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15?years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones.  相似文献   

5.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.  相似文献   

6.
The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model (CGCM), which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4. The CGCM well captures the spatial and temporal structure of the Pacific El Ni?o-Southern Oscillation (ENSO) and the variability features in the tropical Indian Ocean. The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments. Results show that the occurrence frequency of positive/negative Indian Ocean Dipole (IOD) event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean. Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient of thermocline via modulating the background sea surface wind.  相似文献   

7.
The interannual variability associated with the El Ni?o/Southern Oscillation (ENSO) cycle is investigated using a relatively high-resolution (T42) coupled general circulation model (CGCM) of the atmosphere and ocean. Although the flux correction is restricted to annual means of heat and freshwater, the annual as well as the seasonal climate of the CGCM is in good agreement with that of the atmospheric model component forced with observed sea surface temperatures (SSTs). During a 100-year simulation of the present-day climate, the model is able to capture many features of the observed interannual SST variability in the tropical Pacific. This includes amplitude, lifetime and frequency of occurrence of El Ni?o events and also the phase locking of the SST anomalies to the annual cycle. Although the SST warming during the evolution of El Ni?os is too confined spatially, and the warming along the Peruvian coast is much too weak, the patterns and magnitudes of key atmospheric anomalies such as westerly wind stress and precipitation, and also their eastward migration from the western to the central equatorial Pacific is in accord with observations. There is also a qualitative agreement with the results obtained from the atmospheric model forced with observed SSTs from 1979 through 1994. The large-scale dynamic response during the mature phase of ENSO (December through February) is characterized by an eastward displacement and weakening of the Walker cell in the Pacific while the Hadley cell intensifies and moves equatorward. Similar to the observations, there is a positive correlation between tropical Pacific SST and the winter circulation in the North Pacific. The deepening of the Aleutian low during the ENSO winters is well captured by the model as well as the cooling in the central North Pacific and the warming over Canada and Alaska. However, there are indications that the anomalies of both SST and atmospheric circulation are overemphasized in the North Pacific. Finally, there is evidence of a coherent downstream effect over the North Atlantic as indicated by negative correlations between the PNA index and the NAO index, for example. The weakening of the westerlies across the North Atlantic in ENSO winters which is related to a weakening and southwestward displacement of the Icelandic low, is in broad agreement with the observations, as well as the weak tendency for colder than normal winters in Europe. Received: 31 October 1995 / Accepted: 29 May 1996  相似文献   

8.
The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden–Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model.  相似文献   

9.
The latest two versions of the IAP Flexible Global Ocean-Atmosphere-Land System (FGOALS) model- versions g1.0 and g1.1, are described in this study. Both two versions are fully coupled GCMs without any flux correction, major changes for g1.1 mainly lie in four aspects: (1) advection schemes for tracer in the ocean component model; (2) zonal filter scheme in high latitudes in the ocean component model; (3) coupling scheme for fresh water flux in high latitudes; and (4) an improved algorithm of airsea turbulent flux depending on the surface current of the ocean. As a result, the substantial cold biases in the tropical Pacific and high latitudes are improved by g1.1, especially g1.1 simulates more reasonable equatorial thermocline, poleward heat transport, zonal overturning stream function in the ocean and sea ice distribution than g1.0. Significant ENSO variability are simulated by both versions, however the ENSO behavior by g1.0 differs from the observed one in many aspects: about twice ENSO amplitude as observed, false ENSO asymmetry, only one peak period around 3 years, etc. Due to improved mean climate state by g1.1, many basic characteristics of ENSO are reproduced by g1.1, e.g., more reasonable ENSO amplitude, two peaks of power spectra for ENSO events, and positive SST skewness in the eastern Pacific as observed.  相似文献   

10.
We study the relationship between changes in equatorial stratification and low frequency El Niño/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic “tunnel” that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific.  相似文献   

11.
Observations show that the tropical E1 Nifio-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.  相似文献   

12.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

13.
This work examines the relevance of a classical two-column modeling framework of the tropical climate in terms of observed natural variability. A method is developed to analyze the observed tropical climate in a simple framework that features a moist, ascending column and a dry, subsiding one. This method is used to analyze the natural variability of the tropical climate in the ERA40 reanalysis and in ISCCP satellite data. It appears that the seasonal cycle of the tropic-wide sea surface temperature (SST) is almost linearly linked to the seasonal cycle of the relative area of the moist regions, as predicted by the sensitivity of the two-column models. A more detailed analysis shows that this link is the product of a complex interaction and adjustments between the moist and dry regions. The seasonal cycle of low-cloud cover in the dry regions also appears to interact with the SST seasonal cycle: the low-cloud cover influences the tropic-wide SST via its direct radiative forcing on the local SST and it appears to be controlled by the SST difference between moist and dry regions. By contrast, the SST interannual variability appears to be driven by the El Ni?o Southern Oscillation (ENSO), with no significant impact from the changes in the relative area of the moist regions or in the low-cloud cover in the dry regions independently of the ENSO. ENSO-related changes in the area of moist regions and low-cloud cover constitute negative feedbacks on the ENSO-related SST variability.  相似文献   

14.
热带太平洋线性海气耦合系统的主模与ENSO   总被引:2,自引:0,他引:2  
谢倩  杨修群 《大气科学》1996,20(5):547-555
本文利用包含海洋表面边界层、线性海洋大气动力学以及完整的关于不均匀气候态线性化SST预报方程的热带太平洋海气耦合模式, 在真实的气候背景态和参数域内,研究了海气耦合系统的特征值问题,确定了线性耦合系统主模的特征周期及其稳定性特征,进而揭示了主模和ENSO的关系。结果表明:准两年振荡是线性海气耦合系统中的最不稳定模态,且只有该模态类似于ENSO水平结构。因此,准两年振荡很可能是海气耦合系统固有的最根本性的振荡过程。本文也对准两年振荡的形成与年循环的关系以及它在ENSO时间尺度形成中的作用进行了讨论。  相似文献   

15.
ENSO representation in climate models: from CMIP3 to CMIP5   总被引:4,自引:2,他引:2  
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.  相似文献   

16.
The response of El Niño and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO2 concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Niño-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.  相似文献   

17.
Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes (OA Flux) Project of Woods Hole Oceanographic Institution, as well as the outgoing longwave radiation and surface wind datasets from National Oceanic and Atmospheric Administration, the seasonal dependence of local air-sea interaction over the tropical western Pacific warm pool (referred to the region (1o-6oN, 144o-154oE)) is revealed and the probable impacts of remote forcing on the air-sea interaction are examined. The results indicated the dominance of oceanic forcing with the significant impact of ENSO in March and that of atmospheric feedback without notable influence of remote forcing in June. While the interannual variability of sea surface temperature anomaly (SSTA) is larger than that of SSTA tendency when oceanic forcing is dominant, the opposite is true when atmospheric feedback is dominant. The magnitude of the oceanic forcing of the atmosphere tends to decrease in March with the occurrence of ENSO, though ENSO has little influence on the atmospheric feedback to the ocean in June. The local air-sea interaction is substantially the same before and after the removal of the effect of Indian Oceanic Dipole. The reduction of shortwave radiation fluxes into the western Pacific warm pool, due to the enhanced overlaying convection in March associated with ENSO, leads to the decline of SST tendency that will weaken the oceanic forcing of the atmosphere.  相似文献   

18.
ENSO循环年代际变化及其数值模拟   总被引:2,自引:1,他引:1  
梁晓妮  俞永强  刘海龙 《大气科学》2008,32(6):1471-1482
从20世纪70年代后期的观测资料分析中显示了全球气候的年代际变化, 同时也表现在热带太平洋上最重要的海气耦合现象ENSO的年代际变化上。本文利用中国科学院大气物理研究研究所 (IAP) 大气科学和地球流体力学数值模拟国家重点实验室 (LASG) 的气候系统海洋模式 (简称LICOM), 对ENSO的年际以及年代际变率进行模拟, 结果表明LICOM基本能够模拟出ENSO年际变化的特征, 通过对海洋上层热含量的计算以及对热量和质量输送的变化分析, 能够看到模式中ENSO循环中的反馈机制与理论研究的结论是一致的。同时, 作者还发现模式能够重现ENSO循环的年代际变化特征, 例如周期、 传播方向和冷暖事件不对称性等特征的模拟也基本接近观测事实, 其中重点分析了冷暖事件的不对称性与非线性加热 (NDH) 之间的关系, 进一步分析还发现ENSO的强度、 不对称性与海洋内部的非线性过程之间在年代际尺度上也存在密切的关系。但是, 模式模拟与观测结果之间仍然存在着一定的误差, 模式有待于进一步改进。  相似文献   

19.
The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-g1.0, FGOALS-g2 and FGOALSs2), which have participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), are presented in this paper. The seasonal cycle of SST in the tropical Pacific is realistically reproduced by FGOALS-g2 and FGOALSs2, while it is poorly simulated in FGOALS-g1.0. Three feedback mechanisms responsible for the SST annual cycle in the eastern Pacific are evaluated. The ocean-atmosphere dynamic feedback, which is successfully reproduced by both FGOALS-g2 and FGOALS-s2, plays a key role in determining the SST annual cycle, while the overestimated stratus cloud-SST feedback amplifies the annual cycle in FGOALS-s2. Because of the serious warm bias existing in FGOALS-g1.0, the ocean-atmosphere dynamic feedback is greatly underestimated in FGOALS-g1.0, in which the SST annual cycle is mainly driven by surface solar radiation. FGOALS-g1.0 simulates much stronger ENSO events than observed, whereas FGOALS-g2 and FGOALSs2 successfully simulate the observed ENSO amplitude and period and positive asymmetry, but with less strength. Further ENSO feedback analyses suggest that surface solar radiation feedback is principally responsible for the overestimated ENSO amplitude in FGOALS-g1.0. Both FGOALS-g1.0 and FGOALS-s2 can simulate two different types of El Ni-no events — with maximum SST anomalies in the eastern Pacific (EP) or in the central Pacific (CP) — but FGOALS-g2 is only able to simulate EP El Ni-no, because the negative cloud shortwave forcing feedback by FGOALS-g2 is much stronger than observed in the central Pacific.  相似文献   

20.
Using the Paleoclimate Modeling Inter-comparison Project Phase 2 and 3 (PMIP2 and PMIP3), we investigated the tropical Pacific climate state, annual cycle, and El Niño-Southern Oscillation (ENSO) during the mid-Holocene period (6,000 years before present; 6 ka run). When the 6 ka run was compared to the control run (0 ka run), the reduced sea surface temperature (SST) and the reduced precipitation due to the basin-wide cooling, and the intensified cross-equatorial surface winds due to the hemispheric discrepancy of the surface cooling over the tropical Pacific were commonly observed in both the PMIP2 and PMIP3, but changes were more dominant in the PMIP3. The annual cycle of SST was weaker over the equatorial eastern Pacific, because of the orbital forcing change and the deepening mixed layer, while it was stronger over the equatorial western pacific in both the PMIP2 and PMIP3. The stronger annual cycle of the equatorial western Pacific SST was accompanied by the intensified annual cycle of the zonal surface wind, which dominated in the PMIP3 in particular. The ENSO activity in the 6 ka run was significantly suppressed in the PMIP2, but marginally reduced in the PMIP3. In general, the weakened air-sea coupling associated with basin-wide cooling, reduced precipitation, and a hemispheric contrast in the climate state led to the suppression of ENSO activity, and the weakening of the annual cycle over the tropical eastern Pacific might lead to the intensification of ENSO through the frequency entrainment. Therefore, the two opposite effects are slightly compensated for by each other, which results in a small reduction in the ENSO activity during the 6 ka in the PMIP3. On the whole, in PMIP2/PMIP3, the variability of canonical (or conventional) El Niño tends to be reduced during 6 ka, while that of CP/Modoki El Niño tends to be intensified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号