共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(16):1983-2006
ABSTRACTPillow lavas, massive lava flows, and sub-volcanic dikes of tholeiitic basaltic composition are found to be members of the Vrinena, Aerino, Eretria, and Velestino dispersed Middle–Upper Jurassic ophiolitic units in East Othris. The Vrinena and Eretria ophiolitic units appear to have been emplaced onto the Pelagonian continental margin during the Upper Jurassic–Lower Cretaceous, whereas the Aerino and Velestino units seem to have been finally emplaced during post-Palaeocene times. Geochemically these are divided into two groups: Group I includes subduction-related boninites and low-Ti basalts from the Vrinena and Aerino units, and Group II high-Ti basalts show spreading-type characteristics occurring in the Eretria and Velestino units. Primary magma of the Group I volcanics appears to have been formed after high partial melting degrees (~18%) of a highly depleted harzburgitic mantle source, under relatively high temperatures (mantle potential temperature ~1372°C). Petrogenetic modelling also suggests that the primary magma of the Group II volcanics were formed after lower partial melting degrees (~7%) of a moderately depleted mantle source. The petrological and geochemical data from the East Othris dispersed and diversely emplaced ophiolitic units provide evidence of a common intra-oceanic supra-subduction zone (SSZ) origin within the Pindos oceanic strand of the Western Tethys. Specifically, Group I lavas and dikes from Vrinena seem to represent the extrusive part of an almost complete fore- to island-arc ophiolitic sequence. Dikes of Aerino most likely correspond to fore-arc magmatic material that intruded within exhumed serpentinized ultramafic rocks through a subduction channel that developed close to the slab and towards the fore-arc and the accretionary prism. The Group II volcanics either corresponded to a fore-arc magmatic expression, which extruded earlier than Group I volcanics and prior to the establishment of a mature subduction zone, or represent back-arc to island-arc magmatism that was contemporaneous to the fore-arc magmatic activity during rollback subduction. 相似文献
2.
3.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the
Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type
basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies,
consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation.
Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts
also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These
chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates
with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE,
low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis
of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the
MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas
of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas
of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that
the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic
processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations
are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
Summary In the serpentinizedophiolitic rocks from Skyros island, two distinct assemblages of base metal sulphides (BMS) and platinum-group minerals (PGM) occur. The first (early) generation is associated with chromitites which are enriched in platinum-group elements (PGE). The highest values were recorded in samples from Achladones (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; all values in ppb). Mineral inclusions in chromite consist of Ni-Fe sulphides and Os-rich laurite, and crystallized at high sulphur fugacity (fS2) during chromite formation. The second (late) generation is closely associated with Au-rich, PGE-poor magnetite ores which host a complex assemblage of inclusions consisting mainly of graphite, Cu-Fe- and pure Cu sulphides, sperrylite and tetraauricupride. Their accompanying hydrous silicates are Cl-bearing. It is assumed that this mineral assemblage was deposited by hydrothermal processes during serpentinization.
With 8 Figures 相似文献
Minerale der Platingruppe und Tetraauricuprid in Ophiolithen der Insel Skyros, Griechenland
Zusammenfassung In den serpentinisierten Ophiolithen der Insel Skyros wurden zwei unterschiedliche Bildungsgenerationen von Sulfiden (BMS) und Platinmineralen (PGM) festgestellt. Die erste (frühere) Generation ist an Chromitite gebunden, die hohe Gehalte an Elementen der Platingruppe (PGE) aufweisen. Die höchsten PGE-Kontzentrationen wurden in den Proben der Lokalität Achladones gefunden (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; alle Gehalte in ppb). Die Einschlüsse in Chromit bestehen aus Ni-Fe Sulfiden und Os-reichem Laurit. Diese Minerale kristallisierten bei hoher Schwefelfugazität (fS2) während der Bildung der Chromite. Die zweite (spätere) Generation ist eng assoziiert mit Au-reichen und PGE-armen Magnetiten. Sie führen eine komplexe Einschluß-Paragenese bestehend aus Graphit, Cu-Fe- und reinen Cu Sulfiden sowie Sperrylith und Tetraauricuprid. Die begleitenden Hydrosilikate sind Cl-haltig. Die Bildung dieser Mineralparagenese wird durch hydrothermale Prozesse während der Serpentinisierung erklärt.
With 8 Figures 相似文献
5.
Aikaterini Rogkala Petros Petrounias Petros Koutsovitis Panagiota P. Giannakopoulou Panagiotis Pomonis Paraskevi Lampropoulou Konstantin Hatzipanagiotou 《Chemie der Erde / Geochemistry》2022,82(2):125860
In the Veria-Naousa ophiolitic complex (north Greece), rodingite appears mainly in the form of cross cutting dykes within serpentinised peridotites. It is distinguished into three types, based upon the provenance of its protoliths, textural characteristics, mineralogical assemblages and geochemical affinities. Type I rodigites were derived from boninitic diabasic protoliths and their mineralogical assemblage include garnet + clinopyroxene + chlorite. Type II rodingites were formed at the expense of gabbroic precursors, comprising clinopyroxene + garnet + vesuvianite ± quartz, whereas Type III rodingites replaced diabasic tholeiitic protoliths comprising of garnets + vesuvianite + clinopyroxene + chlorite. Rodingitisation resulted in desilification, decrease of alkalies, Al, Fe, Mg and increase in Ca contents. In Type I rodingites the MREE (middle rare earth elements) and HREE (heavy rare earth elements) were slightly reduced. Type II rodingites experienced LREE (light rare earth elements) depletions, whereas MREE and HREE remained fairly stable. Restricted mobility of REE in Type III rodingites is assigned to shallow-level rodingitisation under decreasing pH.Rodingitisation occured in two distinct stages at fore-arc settings. The first stage occured under mildly oxidising conditions and enhanced CO2/H2O ratios. This stage affected the protoliths of all rodingite types. The second rodingitisation stage occured under more oxidising conditions and lower CO2/H2O ratios, which corresponds to the exhumation stage of the serpentinite-rodingite formations. Types II and III rodingites were subjected to further rodingitisation under the increasing influence of slab-derived hydrous phases at shallower depths, leading to the formation of late-stage andradite and vesuvianite. All stages of rodingitisation are estimated to have occurred under relatively moderate temperatures and pressure (~300 to 450 °C; ~2–6 kbar respectively). 相似文献
6.
西天山昭苏北部大哈拉军山组火山岩中辉长岩体的形成时代、地球化学特征及地质意义 总被引:3,自引:0,他引:3
西天山昭苏北部侵入于大哈拉军山组火山岩层上部的辉长岩体具有富集大离子亲石元素(Rb、Sr、Ba)、亏损高场强元素(Nb、Ta)、轻重稀土分馏等地球化学特征,与火山岩围岩具有相似的不相容元素和Sr-Nd同位素特征,其母岩浆可能由俯冲流体交代的富集岩石圈地幔部分熔融形成,晚石炭世之前南天山洋盆向伊犁-中天山板块之下的俯冲可能导致了岩石圈的富集作用。利用不相容元素进行地球化学模拟计算,结果表明辉长岩成分由50%~80%的堆晶矿物(单斜辉石、斜长石)与50%~20%的玄武质熔浆组成。辉长岩体的Cameca锆石U-Pb年龄为311.3±2.3Ma,与伊犁-中天山板块晚石炭世伊什基里克组火山岩的时代大致相当,略晚于西天山榴辉岩的峰期变质时间。辉长岩的时代进一步限定该地区大哈拉军山组火山活动应在早石炭世晚期结束,下石炭统阿克沙克组沉积岩应形成于320~311Ma之间。与辉长岩同时期的岩浆岩在伊犁-中天山板块广泛分布,形成于俯冲结束之后挤压环境向拉张环境过度的构造环境。 相似文献
7.
Nathan L. Green 《Contributions to Mineralogy and Petrology》1982,79(4):405-410
Fluorine contents in 38 Quaternary volcanic rocks, representing calc-alkaline andesite eruptive groups from the Garibaldi Lake area, were determined by a selective ion-electrode method. A close relationship is evident between F abundance and the type of ferromagnesian phenocrysts present in the andesitic rocks. Hypersthene andesites have the lowest F contents (142–212 ppm), whereas hornblende-biotite andesites exhibit the highest F values (279–368 ppm); hornblende andesites have intermediate F contents (238–292 ppm). The hornblende-free Desolation Valley basaltic andesite has a lower F content than the hornblende-bearing Sphinx Moraine basaltic andesite (122 ppm versus 317–333 ppm).Different eruptive suites can be grouped on the basis of F differentiation patterns into (1) a hornblende-free lava series in which the F content of basaltic andesite is less than that of andesite, and (2) a hornblende-bearing lava series in which F contents remain constant or decrease slightly from basaltic andesite through dacite. Fluorine variation in the former series was controlled largely by fractionation of anhydrous minerals, whereas that in the latter was influenced by crystallization of amphibole, biotite and apatite.The distinctive F variation patterns of the two lava series appear to represent real differences in the volatile contents of Garibaldi Lake magmas. These different volatile concentrations may reflect varying degrees of magma-wallrock interaction, differences in the initial volatile contents of the primary magmas, or some combination of these factors. 相似文献
8.
Summary In the eastern Vardar Zone of Greece, Na-dominant salic rocks are intimately associated with ophiolites, constituting a NW-trending, about 8 km thick belt along the western margin of the Serbomacedonian Massif. Though of different ages and metamorphic histories, both contrasted lithologic units display similar lateral variations. The salic rocks vary from a hypabyssal tonalite-trondhjemite series in the NW into granophyres and submarine volcanics in the SE. The juxtaposed ophiolites change in the same direction from tectonite peridotites overlain or intruded by mafic-ultramafic cumulates into sheeted dykes and submarine volcanics. The salic rocks were formed by multi-staged fractional melting of a mafic source and correspond chemically to the low-K andensite rhyolite series. The geological and chemical evidence points at an immature island-are setting for the salic rocks above a NE-dipping subduction zone. The lateral variations in their mode of occurrences probably reflect progressive attenuation of the continental crust. The corresponding variations displayed by the juxtaposed ophiolites may have resulted from a change in the plate motion from conservative in the NW to constructive in the SE.
With 12 Figures 相似文献
Petrologie und geotektonische Bedeutung der den Ophiolithen vorausgegangenen salischen Gesteine in der östlichen Vardar-Zone, Griechenland
Zusammenfassung In der östlichen Vardar-Zone von Griechenland bilden Na-betonte salische Gesteine und Ophiolithe einen NW-streichenden, ca. 8 km mächtigen Gürtel entlang des westlichen Randes des Serbomazedonischen Massivs. Trotz verschiedenen Alters und unterschiedlicher metamorpher Beanspruchung zeigen die beiden lithologischen Einheiten gleiche laterale Variationen. Die salischen Gesteine wechsein von Tonaliten und Trondhjemiten im NW zu Granophyren und submarinen Vulkaniten im SE. Die tektonisch angrezenden, etwas jügeren Ophiolithe variieren in der gleichen Richtung von Tektonit-Peridotiten und den überlagrenden oder intrudierenden mafisch-ultramafischen Kumulaten zu einem Gangstockwerk und submarinen, vorwiegend basischen Vulkaniten. Die salischen Gesteine sind durch ein mehrphasiges fraktioniertes Aufschmelzen mafischen Materials entstanden und entsprechen chemisch der K-armen Reihe von basischem Andesit bis Rhyolith. Als Bildungsort weisen die geologischen und chemischen Kriterien auf einen inmaturen Inselbogen oberhalb einer nach NE gerichteten Subduktionszone während des Mittleren Juras hin. Veränderungen in den Ausbildungsformen der salischen Gesteine gehen offensichtlich auf ein progressives Verdünnen der kontinentalen Kruste zurück. Entsprechende Veränderungen in den gegenübergestellten Ophiolithen lassen sich durch Veränderungen in der Plattenbewegung von konservativ im NW zu konstruktiv im SE erklären.
With 12 Figures 相似文献
9.
位于青藏高原东南缘的腾冲火山区发育大量的后碰撞高钾钙碱性岩浆岩(8Ma至今),形成了近连续的玄武岩-玄武安山岩-粗面安山岩-英安岩系列。在晚更新世(0.3~0.4Ma)粗面安山岩中发现了大量的辉长岩包体与辉长质矿物聚晶。辉长岩包体分为两类:I类为辉长苏长岩(直径2~4cm),主要由斜长石(50%~60%)、单斜辉石(20%~30%)和斜方辉石(5%~10%)组成,矿物间呈高角度接触的开放结构并包含少量的基质玻璃;Ⅱ类辉长岩包体(直径2~12cm)主要由斜长石(40%~50%)与单斜辉石(30%~40%)组成,含少量铁钛氧化物(5%~10%),矿物间见少量的基质玻璃与微晶斜方辉石(粒径 < 50μm)。矿物聚晶(粒径2~5mm)由斜长石(40%~60%)、单斜辉石(20%~30%)和斜方辉石(5%~10%)组成,矿物间呈高角度接触的开放结构,其间贯入基质玻璃。辉长岩包体、矿物聚晶与寄主粗面安山岩斑晶具有相同的矿物组成(斜长石+单斜辉石+斜方辉石);单斜辉石具有相似的微量元素组成特征;辉长岩包体全岩主量元素成分落在玄武岩-玄武安山岩-粗面安山岩-英安岩的演化序列中,它们与寄主粗面安山岩具有一致的Sr-Nd-Pb同位素组成。上述观测结果表明,辉长岩包体和矿物聚晶与寄主岩浆同源,它们均来自粗面安山质岩浆房。矿物温度与压力计算结果表明,辉长岩包体与矿物聚晶的结晶温度低于斑晶,形成深度位于粗面安山质岩浆房的中上部。这些具有开放结构的矿物聚晶与辉长岩包体可能代表粗面安山质岩浆喷发前形成晶粥的"碎片":矿物聚晶与I类辉长岩包体矿物间基质含量较高,矿物成分与寄主粗面安山质熔体(全岩成分)平衡,可能代表寄主粗面安山质岩浆形成的晶粥;Ⅱ类辉长岩包体矿物间紧密程度较高,矿物与较演化的岩浆平衡,可能代表早期较演化的岩浆形成的经历压实作用的晶粥。粗面安山质岩浆的快速上升将这些晶粥破碎并以辉长岩包体与矿物聚晶的方式运移至地表。岩浆房中基性岩浆的补给是导致安山质岩浆喷发的重要诱发机制。 相似文献
10.
长白山上新世以来玄武岩成分演变规律及其成因 总被引:2,自引:2,他引:2
火山岩成分的多样性是岩浆物理和化学过程在其产生、运移、存储和喷发过程中的综合反映。长白山火山区自上新世以来喷发了大量的玄武质火山岩,其成分变化范围较大(Mg O 3.2%~7.8%)。以往研究认为其成分的变化主要受地幔不均一、部分熔融程度和分离结晶的影响,没有明显地壳混染。本研究发现这些玄武岩经历了不同程度的上、下地壳的混染。同时,结合火山岩的年龄发现玄武岩地球化学成分和同位素比值随时间呈现脉动式的变化。根据87Sr/86Sr和Mg O的突变点可以分为3段:5~2Ma,2~1Ma,1~0Ma。通过定性和定量的模拟发现地幔不均一性和部分熔融程度差异造成玄武岩成分的变化有限,而分离结晶、地壳混染和岩浆补给的岩浆作用是形成玄武岩成分随时间脉动变化的主要原因。并结合能量约束-补给-混染-分离结晶算法(ECRAFC)模拟得出以下结论:天池和望天鹅喷发中心的玄武质岩浆最初都存储于同一下地壳岩浆房,可能由于上地壳构造差异导致岩浆迁移路径和存储区不同;长白山岩浆房迁移有从5~2Ma阶段由下地壳向上地壳逐渐变浅,2~1Ma阶段由上地壳向下地壳快速变深的规律,而1~0Ma阶段的玄武岩由岩浆从下地壳直接快速喷出地表形成;长白山玄武质岩浆的活动与本区的构造断裂活动密切的关系,5Ma以来,火山岩成分随时间的周期性波动可能与本区构造应力的周期性的强拉张-弱拉张过程有关。 相似文献
11.
Angelo Peccerillo 《Lithos》1998,43(4):267-279
The Pleistocene intra-Apennine volcanic (IAV) centres occurring east of the potassium-rich Roman comagmatic province show variable petrological and geochemical composition. Some rocks have a strongly undersaturated ultrapotassic kamafugitic affinity with K2O/Na2O=8–20, whereas the rocks from the southern center of Mt. Vulture are still strongly undersaturated in silica but are enriched in both Na2O and K2O with K/Na around unity. Carbonate-rich pyroclastic rocks, believed to represent carbonatitic magmas, are found in the IAV centers. Kamafugites have high abundances of LILE and high LILE/HFSE ratios, and their incompatible element patterns resemble closely those of ultrapotassic rocks from the adjoining Roman province. The Vulture volcanics also display high contents of LILE, but their LILE/HFSE ratios are intermediate between intraplate alkaline rocks and kamafugites. The carbonate-rich rocks exhibit an exotic mineralogy and high enrichments in LILE, which speaks for a carbonatitic affinity. However, they have similar incompatible element patterns but consistently lower abundances of almost all the elements than the associated silicate volcanics. These data favour the hypothesis that the IAV carbonate rocks may represent mixtures of silicate magmas and geochemically depleted carbonate material. The sedimentary carbonates that crop out extensively along the Apennine chain may be the source of barren carbonate material. Overall, geochemical data of IAV centres and of the rocks from the Roman province display strong geochemical and isotopic evidence of being generated in an upper mantle that was modified by addition of upper crustal material brought down by subduction processes. A possible exception is represented by Mt. Vulture which, however, occurs east of the main axis of the Apennines, on the western margin of the foreland Adria plate. The occurrence of strongly undersaturated alkaline rocks requires magma generation at high pressures and
. This is in agreement with the hypothesis that subduction processes under the Apennines occurred by consumption of poorly hydrated thinned or delaminated continental crust. 相似文献
12.
S. Capedri G. Venturelli G. Bocchi J. Dostal G. Garuti A. Rossi 《Contributions to Mineralogy and Petrology》1980,74(2):189-200
The ophiolites of Northern Pindos have been studied in a section close to the village of Perivoli (Grevena District). The section comprises cumulus rocks ranging from ultramafics to gabbros, overlain by dolerites (non-cumulus microgabbro) capped by thick frequently pillowed lava flows. The sequence is cut by basaltic dykes. While the cumulus rocks and the dolerites are mostly fresh, the lavas and dykes are strongly transformed.Major and trace element (Ni, Cr, Sc, Y, Zr, Nb, Sr, Ba, Zn, Cu, V, Li) data are presented for selected samples from the sequence. For some elements, the volcanic/subvolcanic rocks (flows, dykes, dolerites) exhibit wide chemical characteristics which are considered to mainly reflect variations within the parent magmas. Some lavas appear to be closely comparable with the present-day ocean-floor basalts, while other flows and most of the dykes are strongly depleted in some incompatible elements and are similar to some rocks from immature island arcs. The dolerites have transitional chemical features. The Pindos lavas differ from Western Mediterranean ophiolites in that the former have lower Ti,P,Zr,Y, higher Fe tot. and normally higher Ti/Zr ratio.The volcanic/subvolcanic rocks from Pindos have been derived from separate magmas. Some lavas were possibly produced by variable partial melting of an already depleted mantle source, while the lavas exhibiting ocean-floor affinity were probably generated by partial melting of a less depleted source. The wide chemical variations of the Pindos lavas cannot be easily explained by an ocean-ridge system. An island arc-marginal basin system could better account for the observed chemical features. 相似文献
13.
大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系 总被引:42,自引:19,他引:42
作者认为单个锆石的同位素年龄记录了所在区域单次构造、岩浆或变质事件活动的时间,不同来源的大量原岩单颗粒锆石的测年数据则可以反映研究区总体构造演化历史。本文对近年来在大兴安岭中北段自测和收集的123件原岩样品的2636个锆石U-Pb测年点的同位素年龄进行统计,结果显示研究区的锆石年龄数据总体上出现840~780Ma, 530~440Ma, 330~280Ma, 240~190Ma,180~160Ma和150~120Ma等多个明显高峰值区间和>840Ma, 770~540Ma和440~400Ma三个相对数据较少的空白地段,且岩浆结晶锆石、变质锆石、继承性锆石等不同成因类型的锆石的年龄统计分布有良好的对应性。年龄数据的高峰值区间与该地区基底形成、陆壳生长、主要板块或微板块俯冲、碰撞、拼贴等主要构造事件时间吻合;而年龄空白区间则与主要的洋底扩张、被动陆缘时代相吻合。研究说明大量原岩锆石的测年数据与河流碎屑锆石同位素年代学一样,可以用于研究物源区的地壳生长和构造演化历史。综合大兴安岭中北段大量单颗粒锆石的同位素年代学、岩石组合和构造特征研究,说明该地区经历了古元古代基底形成、新元古代陆壳生长、新元古代末期板块裂解,古生代期间古陆块间的俯冲、拉张、拼贴碰撞,早中生代碰撞造山、晚中生代造山后伸展垮塌、大陆边缘弧后伸展等复杂的构造演化历史;同时表明蒙古-鄂霍茨克洋在早中生代时期(晚三叠世)即已碰撞造山,大兴安岭中北段及额尔古纳地区发育大量与碰撞有关的花岗岩、混合岩及碰撞后伸展跨塌有关的构造和岩石产物(盆岭构造、滑脱构造、变质核杂岩、陆相双峰式火山岩和多金属成矿等),这对于重新认识研究区中生代多金属成矿的地球动力学背景提供了新的依据。 相似文献
14.
Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications 总被引:1,自引:0,他引:1
Local U-Pb dating of zircons separated from various rocks in the crest zone of the Mid-Atlantic Ridge (MAR) and Carter Seamount
(Sierra Leone Rise) is performed. Younger zircons formed in situ in combination with older xenogenic zircons are revealed
in enriched basalts, alkaline volcanic rocks, gabbroic rocks, and plagiogranites. Only older zircons are found in depleted
basalts and peridotites. Older zircons are ubiquitous in the young oceanic lithosphere of the Central Atlantic. The age of
the younger zircons from the crest zone of the MAR ranges from 0.38 to 11.26 Ma and progressively increases receding from
the axial zone of the ridge. This fact provides additional evidence for spreading of the oceanic floor. The rate of half-spreading
calculated from the age of the studied zircons is close to the rate of half-spreading estimated from magnetic anomalies. The
age of the younger zircons from Carter Seamount (58 Ma) corresponds to the age of the volcanic edifice. Older zircons make
up an age series from 53 to 3200 Ma. Clusters of zircons differing in age reveal quasiperiodicity of about 200 Ma, which approximately
corresponds to the global tectonic epochs in the geological evolution of the Earth. Several age groups of older zircons combine
grains close in morphology and geochemistry: (1) Neoproterozoic and Phanerozoic (53–700 Ma) prismatic grains with slightly
resorbed faces, well-preserved or translucent oscillatory zoning, and geochemical features inherent to magmatic zircons; (2)
prismatic grains dated at 1811 Ma with resorbed faces and edges, fragmentary or translucent zoning, and geochemical features
inherent to magmatic zircons; (3) ovoid and highly resorbed prismatic grains with chaotic internal structure and metamorphic
geochemical parameters; the peak of their ages is 1880 Ma. The performed study indicates that older xenogenic zircons from
young rocks in the crest zone of the MAR were captured by melt or incorporated into refractory restite probably in the sublithospheric
mantle at the level of magma generation in the asthenosphere. It is suggested that zircons could have crystallized from the
melts repeatedly migrating through the asthenosphere during geological history or were entrapped by the asthenosphere together
with blocks of disintegrated and delaminated continental lithosphere in the process of breakup of the continents older than
Gondwana. The variability in the age of older zircons even within individual samples may be regarded as evidence for active
stirring of matter as a result of periodically arising and destroyed within-asthenospheric convective flows varying in orientation
and scale. 相似文献
15.
D.J Whitford 《Geochimica et cosmochimica acta》1975,39(9):1287-1302
Pleistocene and Recent lavas from the Sunda arc range from those showing affinities with the island arc tholeiitic series, through a spectrum of calc-alkaline to high-K alkaline rocks. The tholeiitic rocks have relatively low ratios averaging 0–7043; the calc-alkaline rocks show a wide range (from 0.7038 to 0.7059, averaging 0.7048); the high-K alkaline rocks average 0.7045. A rhyolitic ignimbrite from Sumatra has an ratio of 0.7139.The relationship between and major and trace element geochemistry is variable and complex. Lavas from the same volcano sometimes show significant differences in despite close geochemical relationships. Rocks of the calc-alkaline suite show a regular decrease in from West Java to Bali and there is some evidence for increasing with increasing depth to the Benioff zone. Calc-alkaline and tholeiitic rocks from the Sunda arc have significantly higher ratios than those from other island arcs, except from those arcs where continental crustal involvement has been inferred (e.g. New Zealand).A model of 87Sr enrichment due to isotopic equilibration of oceanic crust with sea water and disequilibrium melting in the slab and/or mantle is favoured to explain the Sr isotopic composition of the tholeiitic and normal calc-alkaline lavas. Calc-alkaline lavas with high ratios are best explained by either sialic contamination, or the presence of alkali basalt as a component of the downgoing slab. The Sr isotopic data for the high-K alkaline lavas suggest a mantle origin. The high ratio in the Lake Toba rhyolite implies a crustal origin. 相似文献
16.
The blueschist and greenschist units on the island of Sifnos, Cyclades were affected by Eocene high‐pressure (HP) metamorphism. Using conventional geothermobarometry, the HP peak metamorphic stage was determined at 550–600 °C and 20 kbar, close to the blueschist and the eclogite facies transition. The retrograde P–T paths are inferred with phase diagrams. Pseudosections based on a quantitative petrogenetic grid in the model system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O reveal coeval decompression and cooling for both the blueschist and the greenschist unit. The conditions of the metamorphic peak and those of the retrograde stages conform to a similar metamorphic gradient of 10–12 °C km?1 for both units. The retrograde overprint can be assigned to low‐pressure blueschist to HP greenschist facies conditions. This result cannot be reconciled with the (prograde) Barrovian‐type event, which affected parts of the Cyclades during the Oligocene to Miocene. Instead, the retrograde overprint is interpreted in terms of exhumation, directly after the HP stage, without a separate metamorphic event. Constraints on the exhumation mechanism are given by decompression‐cooling paths, which can be explained by exhumation in a fore‐arc setting during on‐going subduction and associated crustal shortening. Back‐arc extension is only responsible for the final stage of exhumation of the HP units. 相似文献
17.
The research history of allanite-(Y) has been considered. The composition and genesis of this mineral is discussed with allowance for new findings in Li-F granites of the Russian Far East. Compositional anomalies in allanite-(Y) reflect the metastable character of its structure. Types of zoning and trends in the chemical substitution of major components are described. Two crystal chemical modes of allanite-(Y) formation and the two-step isomorphism of its components are suggested. The main tendencies in the chemical evolution of allanite-(Ce) and allanite-(Y) in granitic rocks of the Far East are pointed out. Allanite-(Y) is formed in the anomalous geochemical setting that characterizes crystallization of fluid-saturated subalkaline granitic melt and is regarded as an index mineral of rare-metal ongonite magmatism completing the Late Cretaceous Pacific Orogeny. 相似文献
18.
E. T. C. Spooner R. D. Beckinsale W. S. Fyfe J. D. Smewing 《Contributions to Mineralogy and Petrology》1974,47(1):41-62
Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰ Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water. Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust. 相似文献
19.
Jon Steen Petersen 《Contributions to Mineralogy and Petrology》1980,73(2):161-172
Quantitative analysis of REE distribution in differentiated, clearly intrusive charnockites from southwest Norway, reveal extreme variation in both absolute abundances and fractionation patterns. The pyroxene-bearing, charnockitic facies show uniform REE patterns with slight enrichment of the light-REE (about 150x chondrites) and positive, neutral or negative Eu-anomalies. Subsequent amphibole-bearing, adamellitic facies show progressive, preferential enrichment of light-REE, reaching La-values higher than 500x chondrites, and increasingly negative Euanomalies. Finally, highly differentiated biotite-granites show a marked depletion of ight-REE, ending with chondrite-normalized La/Lu ratios about 1 and Eu/ Eu* ratios less than 0.2.Using geochemical model calculation, relating major element variations between three main stages of differentiation in terms of refractory mineral assemblages, stepwise quantitative modelling of the REE distributions reproduces the observed changes, and support an origin of the charnockite series as progressively fractionated residual liquids.Close similarity with the REE patterns of charnockite-rapakivi suites elsewhere implies that these may constitute a series of co-magmatic rocks, derived from related more basic source magmas. The fact that the least differentiated members of the series, the charnockites, generally display remarkably uniform REE-patterns, suggests that they equilibrated with a refractory crystal fraction that produces a uniform, bulk partition coefficient. The present analysis suggests that this would be plagioclase and orthopyroxene in a ratio of about 41 and including minor apatite, which in turn points towards affinity with potentially plagioclase-rich cumulates. 相似文献
20.
The occurrence of ultra high pressure (UHP) and high pressure (HP) relicts associated with oceanic material suggests the presence
of a suture zone within the Rhodope Massif. Characterisation of the accreted igneous terranes and their relationship with
the UHP/eclogite occurrences provide new constraints on the location of this suture. Single-zircon evaporation and sensitive
high-resolution ion microprobe dating of orthogneiss protoliths define two groups of intrusion ages: Permo-Carboniferous and
Late Jurassic–Early Cretaceous. Structurally, the Late Jurassic gneissic complex overthrust a unit with Permo-Carboniferous
orthogneisses. A “melange zone” marked by mylonites, eclogites, amphibolites, and UHP micaschists separates these two units.
We interpret these observations in terms of two distinct igneous terranes, the Thracia (Permo-Carboniferous) and Rhodope (Late
Jurassic) terranes, separated by the Nestos suture, and assembled during the closure of an oceanic basin of the Tethys. Geochemically,
the Late-Jurassic rocks are akin to subduction magmatism, possibly the same subduction that caused the UHP metamorphism of
metasediments within the “melange zone”. Observed UHP–HP relicts are restricted to the tectonic contact zone, suggesting that
a single subduction/collison event can explain the occurrences of UHP relicts and eclogites in the Central Rhodope, and that
subducted rocks are exhumed only within the Nestos suture. 相似文献