共查询到20条相似文献,搜索用时 0 毫秒
1.
Maisa Rojas Patricio Moreno Masa Kageyama Michel Crucifix Chris Hewitt Ayako Abe-Ouchi Rumi Ohgaito Esther C. Brady Pandora Hope 《Climate Dynamics》2009,32(4):525-548
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales.
Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of
global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however,
is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies
during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison
Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone
tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the
Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as
well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient
generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated
the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three
of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM
than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in
precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over
NW Patagonia. 相似文献
2.
Masa Kageyama Pascale Braconnot Laurent Bopp Véronique Mariotti Tilla Roy Marie-Noëlle Woillez Arnaud Caubel Marie-Alice Foujols Eric Guilyardi Myriam Khodri James Lloyd Fabien Lombard Olivier Marti 《Climate Dynamics》2013,40(9-10):2469-2495
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators. 相似文献
3.
Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7 C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6 C and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23 C and 4.59 C. The sensitivity of precipitation to the changes of TAS is~2.3% C-1 , which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM. 相似文献
4.
The soluble and insoluble parts of 4 major components (Al, Ca, K and Mg) of the continental dust input over East Antarctica, as well as size, distribution parameters of the insoluble part of this dust, have been studied along an ice core which spanns the last climatic cycle (160 kyr). These results provide a better understanding of the respective impact of the different potential dust sources. While Al and K were probably entrapped in illite originating from arid areas and in a lesser extent from shallow marine sediments, Ca and Mg inputs were dominated by marine carbonate of exposed continental shelves emissions. 相似文献
5.
The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes. 相似文献
6.
A. Jost D. Lunt M. Kageyama A. Abe-Ouchi O. Peyron P. J. Valdes G. Ramstein 《Climate Dynamics》2005,24(6):577-590
The analyses of low-resolution models simulations of the last glacial maximum (LGM, 21 kyr BP) climate have revealed a large
discrepancy between all the models and pollen-based palaeoclimatic reconstructions. In general, the models are too warm relative
to the observations, especially in winter, where the difference is of the order of 10°C over western Europe. One of the causes
of this discrepancy may be related to the low spatial resolution of these models. To assess the impact of using high-resolution
models on simulated climate sensitivity, we use three approaches to obtain high-resolution climate simulations over Europe:
first an atmospheric general circulation model (AGCM) with a stretched grid over Europe, second a homogeneous T106 AGCM (high
resolution everywhere on the globe) and last a limited area model (LAM) nested in a low-resolution AGCM. With all three methods,
we have performed simulations of the European climate for present and LGM conditions, according to the experimental design
recommended by the Palaeoclimate Modeling Intercomparison Project (PMIP). Model results have been compared with updated pollen-based
palaeoclimatic indicators for temperature and precipitation that were initially developed in PMIP. For each model, a low-resolution
global run was also performed. As expected, the low-resolution simulations underestimate the large cooling indicated by pollen
data, especially in winter, despite revised slightly warmer reconstructions of the temperatures of the coldest month, and
show results in the range of those obtained in PMIP with similar models. The two high-resolution AGCMs do not improve the
temperature field and cannot account for the discrepancy between model results and data, especially in winter. However, they
are able to reproduce trends in precipitation more closely than their low-resolution counterparts do, but the simulated climates
are still not as arid as depicted by the data. Conversely, the LAM temperature results compare well with climate reconstructions
in winter but the simulated hydrological cycle is not consistent with the data. Finally, these results are discussed in regard
of other possible causes for discrepancies between models and palaeoclimatic reconstructions for the LGM European climate. 相似文献
7.
8.
J. Servant 《Atmospheric Research》1993,30(4)
Data concerning carbon cycle variations on the earth's surface during the past 200,000 years are reviewed.The variations of the surface temperature (T) and concentration of carbon dioxide (CO2) in the atmosphere of Antarctica are compared to those of the isotopic ratios of oxygen 18O/16O (δ18O) and of carbon 13C/12C (°13C) of waters in the deep oceans for the two last glacial cycles. This comparison shows that the decrease of the atmospheric CO2 concentration is accompanied by a carbon transferase from the continental biosphere to the oceanic deep waters. At the glacial maximum this transfer is estimated to be about 500 GtC (1 GtC = 1015g of carbon) equivalent to 25% of the carbon storage of the biosphere. It occurs mainly in the high latitudes of the Southern Hemisphere by incorporation of CO2 into particulate matter during photosynthesis. It is shown that the mean oceanic productivity does not increase with a supplementary supply of ions such as phosphate (PO43−) or nitrate (NO3−) but that the intensity of the thermohaline circulation is certainly reduced. As the warming up of the oceans and the melting of the ice-sheet begin carbon transfer takes place to restore the continental biosphere.Another carbon transfer of a much more important intensity is also at work in the sea shore environment. Its intensity could be sufficient to renew the entire carbon of the continental biospheric, atmospheric and oceanic reservoirs in a length of time comparable to a glacial cycle. This fact shows the importance of studying the deposition of carbon in oceanic zones which are uncovered with drops in sea level. At the present time data on the coastal environment in relation to the global carbon cycle are very scarce and warrants more research in this area. 相似文献
9.
C. Kubatzki M. Montoya S. Rahmstorf A. Ganopolski M. Claussen 《Climate Dynamics》2000,16(10-11):799-814
The climate at the Last Interglacial Maximum (125 000 years before present) is investigated with the atmosphere-ocean general circulation model ECHAM-1/LSG and with the climate system model of intermediate complexity CLIMBER-2. Comparison of the results of the two models reveals broad agreement in most large-scale features, but also some discrepancies. The fast turnaround time of CLIMBER-2 permits one to perform a number of sensitivity experiments to (1) investigate the possible reasons for these differences, in particular the impact of different freshwater fluxes to the ocean, (2) analyze the sensitivity of the results to changes in the definition of the modern reference run concerning CO2 levels (preindustrial versus “present”), and (3) estimate the role of vegetation in the changed climate. Interactive vegetation turns out to be capable of modifying the initial climate signals significantly, leading especially to warmer winters in large parts of the Northern Hemisphere, as indicated by various paleodata. Differences due to changes in the atmospheric CO2 content and due to interactive vegetation are shown to be at least of the same order of magnitude as differences between the two completely different models, demonstrating the importance of careful experimental design. 相似文献
10.
11.
Geological evidence and oxygen-isotope variations in deep-sea cores provide valuable information about the sea-level variations of the past. Ice-volume equivalent is usually computed by using a constant oceanic area. In this paper a relationship is developed between the continental ice-volume variation and the sea-level drop by taking into account the sea-floor topography and, therefore, the variation of the oceanic area. It appears from such calculations that the last glacial maximum ice volume is 7% less than previously estimated, and that the minimal reconstruction of the ice sheets from Hughes et al. (1981) seems the most likely. 相似文献
12.
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled
atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2,
with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular
on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature
and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous
AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter
temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that
the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble
(i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular,
this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional
analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of
the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations
of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results
indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate
change prediction at the regional scale.
Received: 12 January 1998 / Accepted: 7 July 1999 相似文献
13.
Seong-Joong Kim Thomas J. Crowley David J. Erickson Bala Govindasamy Phillip B. Duffy Bang Yong Lee 《Climate Dynamics》2008,31(1):1-16
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the
NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is
to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation
associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea
surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution
of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution
model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs
were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison
of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now
yield no significant differences between model and observations. There are also significant upland temperature changes in
the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased
lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore
appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more
clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable
more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in
the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part
of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo
data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate
responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable
to that which the proxy data represent. 相似文献
14.
Internal variability of RCM simulations over an annual cycle 总被引:1,自引:0,他引:1
Three one-year simulations generated with the Canadian RCM (CRCM) are compared to each other in order to study internal variability in nested regional climate models and to evaluate the influence exerted by the lateral boundaries information supplied by the nesting procedure. All simulations are generated over a large domain and cover an annual cycle. The simulations use different combinations of surface and atmospheric initial conditions but all of them share the same set of time-dependent lateral boundary conditions taken from a simulation by the Canadian GCM. A first simulation is used as control, the second simulation is launched with different atmospheric and surface initial conditions (IC) and the third simulation is launched taking its surface IC from the control simulation. Comparison of the root-mean-square differences (RMSD) between each pair of simulations shows two distinct seasonal behaviours in the time series of the RMSD. In winter all simulations are almost identical to each other resulting in very low RMSD values while in summer large discrepancies develop between pairs of simulations. For water vapour related fields such as precipitation or specific humidity, these discrepancies are sometimes as large as the monthly averaged variability. However, analysis of the climate statistics shows that, although the evolution of the various summer weather systems is different, the climates of each simulation are similar. 相似文献
15.
16.
F. Giorgi 《Climate Dynamics》2002,18(8):693-708
This work presents an analysis of simulated temperature and precipitation variability and trends throughout the twentieth century over 22 land regions of sub-continental scale in the HADCM3 and HADCM2 (two realizations) coupled models. Regional temperature biases in the HADCM3 and HADCM2 are mostly in the range of -5 K to +3 K for the seasonal averages and -3 K to +2 K for the annual average. Seasonal precipitation biases are mostly in the range of -50% to 75% of present day precipitation, with a tendency in both models to overpredict cold season precipitation. Except for cold season temperature in mid- and high-latitude Northern Hemisphere regions, the average climatology of the HADCM2 and HADCM3 is of comparable quality despite the lack of an ocean flux adjustment in the HADCM3. Both models show warming trends of magnitude in line with observations, although the observed inter-regional patterns of warming trend are not well reproduced. Measures of temperature and precipitation interannual to interdecadal variability in the models are in general agreement with observations except for Northern Hemisphere summer temperature variability, which is overestimated. The models somewhat underestimate the inter-decadal variations in interannual variability measures observed during the century and overestimate the range of anomalies. Both models tend to overpredict the occurrences of short persistences (1-3 years) and underpredict the occurrence and maximum length of long persistences (greater than three years), which is an indication of a deficiency in the simulation of long-lived anomaly regimes. Compared to observations, the models produce a higher magnitude of temporal anomaly correlation across regions and correlation between temperature and precipitation anomalies for a given region. This suggests that local processes that may be effective in decoupling the observed regional anomalies are not captured well. Overall, the variability measures in the HADCM2 and HADCM3 are of similar quality, indicating that the use of a flux correction in the HADCM2 does not strongly affect the regional variability characteristics of the model. 相似文献
17.
A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum 总被引:1,自引:1,他引:1
Bette L. Otto-Bliesner Ralph Schneider E. C. Brady M. Kucera A. Abe-Ouchi E. Bard P. Braconnot M. Crucifix C. D. Hewitt M. Kageyama O. Marti A. Paul A. Rosell-Melé C. Waelbroeck S. L. Weber M. Weinelt Y. Yu 《Climate Dynamics》2009,32(6):799-815
Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the
reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations
from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated
and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere–ocean
coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM.
The models give a range of tropical (defined for this paper as 15°S–15°N) SST cooling of 1.0–2.4°C, comparable to the MARGO
estimate of annual cooling of 1.7 ± 1°C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific,
but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated
tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated
from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling
in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations.
Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain
for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated
by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67°–0.83°C per Wm−2, which translates to equilibrium climate sensitivity for doubling of atmospheric CO2 of 2.6–3.1°C. 相似文献
18.
Reinhard Calov Andrey Ganopolski Martin Claussen Vladimir Petoukhov Ralf Greve 《Climate Dynamics》2005,24(6):545-561
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which
encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional
polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky
BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly
over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at
a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception
represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo
feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold
value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that
for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and
the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium
state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
相似文献
Reinhard CalovEmail: |
19.
20.
TraCE-21ka是全球首个利用全耦合模式针对末次盛冰期(LGM)至今气候演变的瞬变模拟。利用现代再分析资料和历史特征时期重建的连续冻土边界对TraCE-21ka模拟做了评估。结果表明TraCE-21ka能够较好地模拟现代半球尺度环流和降水的空间形态,对东亚地区的模拟冬季较好而夏季欠佳。TraCE-21ka模拟的现代时期与再分析资料相比偏冷,北半球年平均表面温度比再分析资料低3~4 ℃,基于现代温度误差的分析表明TraCE-21ka对东亚地区气候演变的模拟欠佳。对于历史特征时期,重建的连续冻土边界线指示TraCE-21ka模拟的亚欧大陆在LGM偏暖,全新世中期偏冷,即低估了LGM以来的变温幅度。利用连续冻土边界线的年均表面温度约为-7 ℃这一特性,进一步定量评估出TraCE-21ka模拟的亚欧大陆中纬地区从LGM至今的升温幅度约为真实气候的40%。通过分析近百年全球升温速率证实TraCE-21ka的气候敏感性显著偏低,由此产生的误差在瞬变模拟中会不断累积。 相似文献