首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The applicability and usefulness of Geostatistics (kriging) as a tool for optimum selection of sites for monitoring groundwater levels has been demonstrated through a case study. The criterion used is the estimation of error variance. Groundwater level data (pre-monsoon 1994) obtained from 32 observation wells of Upper Kongal basin, Nalgonda District, A.P. (India) has been stochastically analyzed. The spatial distribution of water levels and its associated error variance is computed and the locations having maximum error variance are selected as additional sites for augmenting the existing observational well network. Received: 15 june 1998 · Accepted: 14 December 1998  相似文献   

2.
In order to understand the effects of a landfill operation on groundwater flow behavior, a 2D horizontal groundwater simulation model was carried out. The model saved the memory of computer and time consumption, comparing it with the 3D groundwater flow model. However, the greatest difficulty is the assignment of the collecting pipe boundary at the study site. Therefore, a 2D vertical model was applied to calculate the change of the groundwater table above the collecting pipe. This paper focuses on examining the validation of the assignment of the collecting pipe boundary by applying the results of the 2D vertical model. The 2D horizontal model was coupled with the recharge model to solve the partial differential equation of groundwater flow. The finite difference method and iterative successive over relaxation were applied. The drainage volume of leachate collection was summed up in the whole landfill site and compared with the average volume of treated wastewater. The study demonstrated that the results of the 2D vertical model validated and can be applied to the 2D horizontal groundwater flow simulation.  相似文献   

3.
Military uses of groundwater: a driver of innovation?   总被引:1,自引:0,他引:1  
Military need has been a positive driver to the development of the modern day, and now mature, science of hydrogeology. The important synergy between geology and water supply was appreciated by military men in the mid-nineteenth century but the first real test of this learning only took place in the First World War. German, British and American geologists then mapped water resources and the potential for exploiting groundwater in Belgium and northern France. Technical innovations included deployment of rapid drilling techniques and the promotion of well screens for use in unconsolidated sediments. The mapping techniques were developed further during the Second World War when innovative remote mapping of enemy-occupied territory became an important planning tool to both Allied and German armies. Work in North Africa and other arid and semi-arid terrains promoted insight into the occurrence of groundwater in fresh-water aquifers little replenished by recharge. Mapping of hard rock basement-type environments in the islands of Jersey and Guernsey by German geologists was a concept new to the British Isles. Collectively, these varied initiatives provided part of the foundation for post-Second World War development of modern-day applied hydrogeology.  相似文献   

4.
5.
Acidic groundwater and surface water are common problems in coastal Australia causing massive fish kills, attack of concrete and steel structures, and clogging of waterways. The best solution is the construction of a permeable reactive barrier (PRB) to neutralise the acidic groundwater before entering nearby waterways. A PRB consists of a trench filled with reactive material that intersects the flow-path of a contaminant plume and ameliorates the contaminated groundwater. A PRB is being designed in a pilot scale study in ASS in southeastern Australia. The groundwater is acidic (pH 3) with high A1 (40 mg/L) and Fe (530 mg/L) levels. When the acidic groundwater comes into contact with this PRB, the acid will be neutralized by the alkaline reactive materials and the aluminum and iron will be removed from the groundwater. Twenty-five alkaline materials were tested for use in the PRB, with an emphasis on waste materials, including oyster shells and recycled concrete. Batch tests were used to select the best two reactive materials for use in the column tests. The pH achieved by each material was controlled by the reaction kinetics of the dominant alkaline component.  相似文献   

6.
Investigations were undertaken in the riparian zone near Shangba village, an AMD area, in southern China to determine the effects that river–groundwater interactions and groundwater residence time have had on environmental quality and geochemical evolution of groundwater. Based on the Darcy’s law and ionic mass balances as well as the method of isotopic tracer, the results showed that there were active interactions between AMD-contaminated river water and groundwater in the riparian zone in the study area. River water was found to be the main source of groundwater recharge in the northwestern part of the study area, whereas groundwater was found to be discharging into the river in the southeastern part of the study area throughout the year. End-member mixing analysis quantified that the contributions of river water to groundwater decreased gradually from 35.9% to negligible levels along the flow path. The calculated mixing concentrations of major ions indicated that water–rock reactions were the most important influence on groundwater quality. The wide range of Ca2+?+?Mg2+ and HCO3? ratios and the change of groundwater type from Ca2+–SO42? type to a chemical composition dominated by Ca2+–HCO3? type indicated a change of the major water–rock reaction process from the influence of H2SO4 (AMD) to that of CO2 (soil respiration) along a groundwater flow path. Furthermore, the kinetics interpretation of SO42? and HCO3? concentrations suggested that the overlapping time of their kinetics triggered the hydrochemical evolution and the change of major weathering agent. This process might take approximately 8 years and this kinetic time will be continued when a steady source of contamination enter the aquifer.  相似文献   

7.
The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.  相似文献   

8.
The title of this article is designed to provoke. Naturally occurring parameters are, by definition, not contamination. Nevertheless, nature is not necessarily nice, and naturally occurring trace toxins can be every bit as undesirable as their counterparts derived from human pollution.  相似文献   

9.
The paper aims at evaluating the interaction between ground and surface water along the Langat River in Malaysia through the development of a numerical simulation. Malaysia has been experiencing a rapid economic growth since the last few decades, driven by many factors such as agriculture, industry, and the like. The demand for water in these sectors has increased so tremendously that surface water has been utilized in conjunction to groundwater. Approximately 18,184 m3 of water per day is obtained from the aquifer to supply to the steel factory. There are also workshops, petroleum stations, and houses in the area thus causing the water quantity and quality to degrade. In terms of quantity, the pumping activity has altered the interaction between the groundwater and surface water. Therefore, a numerical model was proposed and two aquifer layers were simulated, with the first layer being approximately >20 m in depth and the second layer >100 m. The recharge estimated from the tank model was input into the groundwater modeling. The effects of the surface water to the aquifer were included in the simulation by defining the river conductance, river bed, and river level. The calibrated model (error about 0.9 m) was achieved and applied to predict the flow pattern in its natural state without the pumping and with the pumping states. As a result, in the first scenario, the stream was in an effluent condition influenced by the groundwater from the northeast to the west. A hyporheic flow occurred and was observed from the contour map. The flow system was changed in the second scenario when the pumping activity was included in the simulation. The groundwater lost its original function but received leakage from the stream near the pumping sites. The findings of this study will help the local authorities and other researchers to understand the aquifer system in the area and assist in the preparation of a sustainable groundwater management.  相似文献   

10.
High concentrations of arsenic and humic substances in groundwater from the southwestern coastal plain of Taiwan were well known for their probable relationships with black-foot disease. In order to realize the relationships between the concentrations of …  相似文献   

11.
12.
As nitrate pollution in groundwater has become increasingly serious in recent years, nitrogen isotope was adopted in this paper to define its sources in a typical agricultural area of Dong’e hydrogeological unit. The results show that: Higher content of NO3- detected in shallow groundwater is 27.77 mg/L on average and δ15N content ranges from 7.8‰ to 12 ‰, indicating that shallow groundwater is mainly contaminated by sewage or feces. In contrast, less NO3- in deep groundwater (karst water) has an average value of 12.81 mg/L and δ15N content is between 7.2‰ and 14.3‰, which is closely related to human disturbance as mentioned above. In addition, considering relatively low groundwater quality at some monitoring sites, reasonable fertilization is a better choice in the study area to reduce nitrate source in groundwater.  相似文献   

13.
14.
macroscale processes that perturb general groundwater chemistry and therefore mineral–water equilibria; and microscale interactions, where attached organisms locally perturb mineral–water equilibria, potentially releasing limiting trace nutrients from the dissolving mineral. In the contaminated unconfined glacio-fluvial aquifer near Bemidji, Minnesota, USA, carbonate chemistry is influenced primarily at the macroscale. Under oxic conditions, respiration by native aerobic heterotrophs produces excess carbon dioxide that promotes calcite and dolomite dissolution. Aerobic microorganisms do not colonize dolomite surfaces and few occur on calcite. Within the anoxic groundwater, calcite overgrowths form on uncolonized calcite cleavage surfaces, possibly due to the consumption of acidity by dissimilatory iron-reducing bacteria. As molecular oxygen concentration increases downgradient of the oil pool, aerobes again dominate and residual hydrocarbons and ferrous iron are oxidized, resulting in macroscale carbonate-mineral dissolution and iron precipitation. Feldspars, in contrast, weather exclusively at the microscale near attached microorganisms, principally in the anoxic region of the plume. Native organisms preferentially colonize feldspars that contain trace phosphorus as apatite inclusions, apparently as a consequence of the low P concentration in the groundwater. These feldspars weather rapidly, whereas nearby feldspars without trace P are uncolonized and unweathered. Feldspar dissolution is accompanied by the precipitation of secondary minerals, sometimes on the bacterial cell wall itself. These observations suggest a tightly linked biogeochemical system whereby microbial processes control mineral diagenesis at many scales of interaction, and the mineralogy and mineral chemistry influence microbial ecology. Only the macroscale interaction, however, is easily observable by standard geochemical methods, and documentation of the microscale interactions requires microscopic examination of microorganisms on mineral surfaces and the locally intense diagenetic reactions that result. Received, May 1999/Revised, October 1999/Accepted, October 1999  相似文献   

15.
The characteristics of arsenic-contaminated groundwater were investigated and the potential risks from groundwater were evaluated in Vietnam. Arsenic contamination in groundwater was found in Ha Nam Province in the northern part of Vietnam. Since groundwater has been used as one of the main drinking water sources in this region, groundwater (n=10) and hair (n=15) samples were collected in the Vinh Tru district, Ha Nam Province, during February of 2006. At the site, the concentrations of anions and silica were analyzed and As(Ⅲ) and As(Ⅴ) species in groundwater were separated with disposable arsenic speciation cartridge. The concentrations of arsenic in groundwater ranged from 13 to 582 μg/L (mean=366 μg/L). According to the results of arsenic speciation, approximately 90% of arsenic in groundwater existed as As(Ⅲ) species. Average concentrations of iron and manganese were 18 and 0.7 mg/L, respectively. All samples exceeded the Vietnamese drinking water standard of 10μg/L for arsenic and 0.5 mg/L for iron. Also 70% of the groundwater samples were above the Vietnamese drinking water standard of 0.5 mg/L for manganese. However, a real intake of arsenic to human is less than analyzed arsenic concentration because sand filtration units are used to remove iron and arsenic in groundwater in this region. After treatment, arsenic concentrations decreased from 〈1 to 82 μg/L (mean=33 μg/L). The concentrations of arsenic in hair samples and treated groundwater were compared. Especially, arsenic concentrations in female hair samples and treated groundwater had significantly positive correlation with the Spearman correlation of 0.88 and the P-value of 0.001. Based on the arsenic concentrations in treated groundwater, the assessment of human health risks was conducted.  相似文献   

16.
Boron has two stable isotopes (^10B and ^11B) with relative abundances of about 20% and 80%, respectively. Boron isotopic ratios in natural materials show a huge range of variations, from -70‰ to +60‰, when expressed with the classical δ^11B notation. Most of these isotopic variations occur at the surface of the Earth. Hence, boron isotopic composition can be used as a sensitive tracer in geochemical study, for instance, to identify the different sources of contamination and factors controlling the salinity of groundwater. During the last decade, boron isotopes have been used to discriminate between the influences of seawater intrusion and anthropogenic discharge. But few of those researches can precisely identify the different sources of contamination. We measured the boron concentrations and boron isotopic ratios of groundwater samples collected in Guiyang City, as well as the major ions. The results indicate that the major ion composition of the groundwater in the investigated area is mainly controlled by the interactions between water and the dominant rock i.e. carbonates. All the water compositions are characterized by high concentrations of Ca^2+, Mg^2+, HCO3^-, SO4^2-, and NO3^-, which are the dominant contaminants. Both dissolved boron concentrations and isotopic ratios show large variations among the ground waters, from 2 μg/L to 90 μg/L and from -6‰ to +26‰, respectively. The boron concentrations and isotopic ratios indicate that the river across the studied city has been seriously contaminated by urban discharge. Boron concentrations of fiver water samples varied from 20 μg/L to 140 μg/L, with an average δ^11B value of +2.0‰. Using boron isotopic compositions and different geochemical indices allowed us to clearly identify and distinguish the two major sources of contamination, agricultural activity and urban wastewater. Both of the two sources are characterized by high boron concentrations but their boron isotopic compositions significantly differ.  相似文献   

17.
The shallowly buried marginal part of the Cambrian–Vendian confined aquifer system of the Baltic Basin is characterised by fresh and low δ18O composition water, whereas the deeply settled parts of the aquifer are characterized by typical Na–Ca–Cl basinal brines. Spatial variation in water geochemistry and stable isotope composition suggests mixing origin of the diluted water of three end-members—glacial melt water of the Weichselian Ice Age (115 000–10 000 BP), Na–Ca–Cl composition basin brine and modern meteoric water. The mixing has occurred in two stages. First, the intrusion and mixing of isotopically depleted glacial waters with basinal brines occurred during the Pleistocene glacial periods when the subglacial melt-water with high hydraulic gradient penetrated into the aquifer. The second stage of mixing takes place nowadays by intrusion of meteoric waters. The freshened water at the northern margin of the basin has acquired a partial equilibrium with the weakly cemented rock matrix of the aquifer.  相似文献   

18.
Groundwater in Yinchuan City has been heavily over-exploited, thus leading to the formation of depression cones in confined and phreatic groundwater environments. The depression cones have an important influence on the hydrodynamic and hydrochemical fields of groundwaters. The evolution of depression cones was analyzed on the basis of the monitoring data on groundwater level accumulated in the past 14 years. The ratio of rCl-/rCa2 showed that phreatic water circulation was intensified, and confined groundwater was affected by external factors. Mass balance of Cl- showed confined water mixed with about 11% phreatic water. It is shown that the alternative function of confined water was affected by external factors. At last, the evolution of groundwater hydrochemical field on the basis of groundwater chemical composition showed that phreatic water quality has been improved whereas confined water quality has been deteriorated. Saturation indices of minerals with respect to phreatic and confined waters were calculated by using PHREEQC.  相似文献   

19.
陈冲  张伟  邢庆辉  豆沂宣 《冰川冻土》2022,44(6):1912-1924
黑河流域中下游地下水系统受上游冰冻圈融水和降雨的补给,由气候变暖导致的冰冻圈萎缩致使中下游地下水系统的稳定性面临更多的风险。地下水模型是地下水系统稳定性评估的有效手段,但是地下水模型参数往往存在较大的不确定性。为此,本文提出了基于数据同化算法的不确定性分析方法,通过包含观测资料信息减小模型不确定性。采用所提方法分析了(基于MODFLOW构建)黑河流域中游地下水模型中13个参数的不确定性,讨论了算法超参数的影响及其最优取值,分析了地下水模型参数的不确定性。实验结果证明数据同化算法可有效减小地下水模型参数的不确定性,观测资料的种类与数量对参数不确定性的减小起到重要作用;不同地下水模型参数的不确定性不同,地表水与地下水相互作用频繁的区域参数不确定性较大;含水层渗透系数、含水层给水度以及灌溉回流系数对模型输出的地下水位输出影响显著,河床水力传导系数对模型输出的河流流量影响较大。本研究将为地下水研究提供更加可靠的模型方法,为西北内流区地下水哺育的绿洲生态系统稳定可持续研究提供重要支撑。  相似文献   

20.
The belief that groundwater in rural areas is best managed according to the Community Based Management (CBM) model is the dominant paradigm across Sub-Saharan Africa. While donors and governments focus on extending the supply network to meet the post-2015 Sustainable Development Goal (SDG) of universal access to clean water, at any one time a third of handpumps are non-functional. Basing our case on ethnographic fieldwork, surveys and interviews, and working closely with policy implementers over the course of three years in mid-west Uganda, we argue that non-functionality of handpumps, and the precarious status of many, cannot be blamed solely on poor technology or siting of wells: rather the problem stems from a dearth of maintenance funds and management failings. The CBM model is an uneasy coalition of ideologies from across the political spectrum that meshes neo-liberal inspired commodification with theories of collective action and Common Property Resources. We demonstrate conceptually and empirically how the wings of the CBM model individually and collectively are contributing to the disappointing outcomes amid the messy complex reality of rural environments. Recommendations calling for modifying participatory processes, technological solutions and more external support all fall within the existing CBM framework, which we will empirically demonstrate is a blueprint for breakdown in these contexts. A resolution to the financing of handpump maintenance must be found if the SDG is to be realised, and we argue that academics, policy makers and practitioners need to accept this may lie outside the CBM paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号