首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
Belemnite guards of Cretaceous and Jurassic age were found to contain varying amounts of quartz deposited both on the external surface and inside the rostrum. The oxygen isotopic composition of coexisting carbonate, quartz and phosphate from the same rostrum was measured according to well-established techniques. None of these compounds showed isotopic values in equilibrium with one another. Assuming δ18O values of the diagenetic water within the range of meteoric waters, the δ18O(SiO2) yield temperatures in agreement with the apparent secondary origin of this phase. The δ18O(CO32−) range, with a certain continuity, between −10.8 and +0.97 PDB-1 with most of the intermediate values being within the range of the carbonate isotopic values of Mesozoic fossils. The most positive isotopic results obtained from phosphate are close to +23/+24‰ (V-SMOW). They can hardly be related to a secondary origin of the phosphate, or to the presence of diagenetic effects, since these results are among the most positive ever measured on phosphate. As far as we know there is no widespread diagenetic process determining an 18O enrichment of phosphate. The very low concentration of phosphate did not allow the determination of its mineralogical composition. All the available δ18O(PO43−) values from belemnite and non-belemnite fossils of marine origin of Tertiary and Mesozoic age are reported along with the newly measured belemnites. The following conclusions may be drawn from the data reported: (1) the pristine oxygen isotope composition of fossil marine organisms (either carbonate or phosphate) may easily undergo fairly large changes because of oxygen isotope exchange processes with diagenetic water; this process is apparent even in the case of geologically recent fossils; (2) the δ18O(PO43−) of belemnite rostra seems to be, at least in the case of the most positive results, in isotopic equilibrium with environmental water because of the similarity between the results from Cretaceous belemnites and the results from Cretaceous and Lower Tertiary pelecypods and fish teeth; 3) if so, the only feasible interpretation that can be suggested for the 18O enriched data is the possibility of a relatively large variation of the oxygen isotopic composition of ocean paleowater from Jurassic to recent time.  相似文献   

2.
We present a time series of carbon and oxygen stable isotope records of the last 30?000 14C years throughout the last glacial-postglacial cycle from western Qinghai-Xizhang (Tibet) Plateau. A 20-m core drilled in the south basin of Zabuye Salt Lake was analyzed for inorganic and organic carbon and total sulfur contents, δ13C and δ18O values of carbonates. Our results indicate that climatic changes have led to a drastic negative shift of stable isotope ratios at the transition between the Last Full Glacial and the postglacial phase during Later Pleistocene times (∼16.2 kyr BP), and a rapid positive shift at the transition from Pleistocene to Holocene (∼10.6 kyr BP). The first shift is marked by the drop of δ18Ocarb values of about 10‰ (from +2 to −8‰) and δ13Ccarb values of about 3‰ (from 5 to 2‰). The second shift which occurred at the transition from Pleistocene to Holocene was of similar magnitude but in the opposite direction. Isotope data, combined with total organic and inorganic carbon contents and the lithological composition of the core, suggest this lake was an alluvial pre-lake environment prior to ca. 28 14C kyr BP. During ca. 28-16.2 14C kyr BP, Zabuye Lake was likely a moderately deep lake with limited outflow. The cool and arid glacial climate led the lake level to drop drastically. Extended residence time overwhelmed the lower temperature and caused a steady increase of δ13Ccarb and δ18Ocarb values and total inorganic carbon content in the sediments. During ca. 16.2-10.6 14C kyr BP, this lake probably overflowed and received abundant recharge from melting glaciers when the deglaciation was in its full speed. A spike of markedly enhanced δ13Ccarb and δ18Ocarb is seen at ∼11.5 kyr BP, probably due to the isotopic effects left behind by the short but severe Younger Dryas (YD) event. After ca. 10.6 14C kyr BP, Zabuye Lake probably closed its surface outflow, due to strong desiccation and drastic climate warming. The Early and Middle Holocene were characterized by unstable climatic conditions with alternating warmer/cooler episodes as indicated by the severe fluctuations of total organic carbon, δ13C and δ18O values. A hypersaline salt lake environment was finally formed at Zabuye after ∼5 14C kyr BP when the mirabilite and halite concentrations steadily increased and became the dominant minerals in the sediments. Severe imbalance of inflow/outflow resulted in the drastic increase of total sulfur, δ13Ccarb and δ18Ocarb values and dominance of halite in the lake since ca. 3.8 kyr BP to present.  相似文献   

3.
The oxygen isotope composition of bone and tooth phosphate of 50 fox specimens and 30 reindeer specimens from various locations with different climatic and environmental conditions was measured. The existing relationship between these values and the mean oxygen isotope composition of local meteoric water has been calculated. In the case of foxes, specimens belonging to two genera (Vulpes and Alopex) and three different species were measured. The samples fit a straight line whose equation can be used for paleoclimatological studies either in Arctic or in temperate regions. For reindeer (Rangifer), a relatively large range of isotopic values was obtained from each location, suggesting imperfect equilibrium conditions with environmental water. The calculated equation can be used for semi-quantitative information on local paleowaters at high latitudes only.  相似文献   

4.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

5.
The anomalous drip in the Punkva caves (Moravian Karst) shows specific hydrogeochemical properties such as low SIcalcite ~ 0.14 ± 0.11 (standard deviation), low mineralization (4.53 ± 0.42) × 10?3 mol l?1, and enhanced values of δ13C (?7.85 to ?8.35‰ VPDB), Mg/Ca × 1000 ratio (45.7 ± 3.3), and Sr/Ca × 1000 ratio (0.65 ± 0.06). By these properties, the anomalous drip significantly differs from other regular drips in the same cave and other caves in the region. The study suggests that the anomalous drip properties are a consequence of prior calcite precipitation or/and water mixing along the water flow path. As the former processes are spatially controlled, the knowledge of dripwater flow path seems to be necessary for correct paleoclimatic/paleoenvironmental reconstructions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Correct and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting. Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp , 3.15 ± 0.19 ka bp ). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp . Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Within the high-grade metamorphic basement, the central portion of North China Craton (NCC), a group of Neoarchean khondalites (KS) is identified. They are characterized by large ion lithophile elements (LILE) enrichment, lower abundances of Zr, Hf and Sr. Their rare earth element (REE) distribution has significant LREE enrichment and negative Eu anomalies. The protoliths of KS are interpreted as feldspathic quartzite, shale or pelite and carbonite, deposited in a shallow sea upon cratonic shelf distant from the land. KS's source region might be dominated by granitic rocks, with a minor amount of TTG, underwent comparatively severe chemical weathering. Considering relevent tectonic constraints, we suggest that khondalites from central portion of NCC, an important metamophosed sedimentary cover, are the most significant exogenetic marker of Neoarchean continental cratonization for NCC.  相似文献   

8.
Variation of polycyclic aromatic hydrocarbons (PAHs) levels was assessed in Tapes philippinarum from the Lagoon of Venice. Clams were transplanted from a polluted area next to Porto Marghera to two rearing areas of the Southern Lagoon. Analyses of PAHs were made in sediments and clams by GC/MS at first sampling and after 30, 60 and 180 days. Principal component analysis was performed to elucidate bioaccumulation and depuration pattern and input sources. Biota-Sediment-Accumulation-Factor (BSAF) was applied to evaluate the PAHs input sources from sediment. Condition index was calculated to compare the seasonal variation of clam tissue to PAHs levels. To propose results not affected by seasonal changes in flesh weight of clams, the approach based on the calculation of PAHs/SW index was applied. From the results, it was concluded that PAHs/SW index is more recommendable to asses temporal variation of PAHs levels in Manila clams.  相似文献   

9.
Concentrations of Fe, Zn, Cu, Se, Mn, Mo, Hg, Cd, Cr, Ag, Pb, Sr and V were determined in skins of Dall's porpoises (Phocoenoides dalli) of the Pacific coast truei-type population (PT population) (N=45), and the Sea of Japan-Okhotsk dalli-type population (JD population) (N=31) from the northern waters of Japan. Cutaneous Hg concentrations in both PT and JD populations were significantly correlated with age, indicating a possible alternative method of age estimation. A significant correlation was also noted between Hg concentrations in skin and liver, suggesting that biopsy samples of skin can provide a non-lethal surrogate for monitoring Hg contamination in this species. Trace element accumulation patterns differed strongly between PT and JD populations, when analyzed by principal component analysis, suggesting these patterns could be utilized as non-lethal tracers of population identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号