首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution peat humification records were obtained from Dajiuhu of the Shennongjia Mountains and Qianmutian of the Tianmu Mountains to study climate changes in East China. The analyses of pollen, organic matters, TOC, and Rb/Sr indicate a high degree of peat humification and thus strong decomposition of organic matter when climate was dry. Conversely, when climate was humid, the degree of humification is low because peat was preserved in a waterlogged condition. Peat humification from Dajiuhu occurred not only during the Younger Dryas (about 11.4–12.6 cal ka BP), the Bølling-Allerød Warm Period (12.6–15.2 cal ka BP), and the Oldest Dryas (about 15.2–16.0 cal ka BP), but also during the early Holocene (about 11.4–9.4 cal ka BP), the 8.2 cal ka BP cold event, and the Holocene Optimum (about 7.0–4.2 cal ka BP). Both peat humification records since nearly 5 ka BP are consistent, showing that mountain peatland has synchronous responses to the East Asia monsoon-induced precipitation. The LOI data confirm the above observation. The monsoon precipitation since nearly 5 ka BP recorded in these two peat profiles can be divided into three phases. During 4.9–3.5 ka BP, precipitation amount was high but fluctuated greatly. During 3.5–0.9 ka BP, precipitation amount was low. During 0.9–0 ka BP, degree of humification reduced gradually, indicating the increase of monsoon precipitation. Contrast to other high-resolution records from East China monsoon region shows that the monsoon precipitation records of the two peat profiles since nearly 16 ka BP are controlled by a common forcing mechanism of summer solar radicalization in the Northern Hemisphere.  相似文献   

2.
Holocene peat sediment has been attached impor-tance to reconstruct the Holocene climatic variations because it can provide much palaeoclimatic informa-tion with high resolution. Analysis on the plant mac-rofossil[1], pollen[2―4], isotope ratio[5―9], element con-tent[10,11], total organic carbon (TOC)[12], humifica-tion[13,14] and grayscale[12] for peat sediment has shown its superiorities as a recorder medium for reconstruct-ing the Holocene climate. Hong et al. have done great fruitful w…  相似文献   

3.
吉兰泰盐湖沉积物孢粉记录的季风边缘区全新世气候演化   总被引:2,自引:1,他引:1  
全新世气候具有不稳定性,且存在着区域差异,在季风边缘区尤为显著.因此,本研究选取季风边缘区吉兰泰盐湖沉积物的孢粉记录并结合AMS14C测年结果,对该地区全新世的古植被演化及古气候变化历史进行了重建.结果表明,在全新世阶段,该地区植被类型未发生变化,以干旱的荒漠植被为主.早全新世(10.5 8.5 cal ka BP),以蒿属孢粉为主,伴随出现少量藜科、禾本科及麻黄属孢粉,蒿藜比(A/C比值)相对稳定(4.11左右),指示全新世早期气候逐步转湿的过程,在8.5 cal ka BP,蒿属孢粉数量下降且被藜科孢粉取代,指示一次明显气候干旱事件;中全新世(8.5 3.5 cal ka BP),蒿属孢粉含量增加及藜科孢粉含量降低,A/C比值在7.1 cal ka BP左右达到峰值,指示该地区中全新世气候最为湿润;晚全新世(3.5 cal ka BP至今),藜科孢粉含量增加且超过早全新世,A/C比值低至3.66,区域呈现明显的干旱化趋势.此外,结合吉兰泰盐湖沉积物矿物组成结果,发现中全新世湖泊沉积物中,钙芒硝大量出现,一定程度上指示降水量增多所带来的淡水注入,与孢粉指标指示该阶段湿润的结果一致.通过区域对比,发现吉兰泰地区在全新世时期的气候演化模式与东亚季风区具有较好的一致性,表明该地区受到东亚夏季风的影响较大,尤其是在中全新世,东亚夏季风增强,带来较多的降水,气候湿润.  相似文献   

4.
The El Niño–Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of planktic foraminifera from a sediment core in the western Pacific Ocean. At the centennial scale, variations in the stable oxygen isotope signal (δ18O) are thought be a representation of ENSO variability, although an imprint of local conditions cannot be entirely excluded. The record for the early Holocene (10.3–6 ka BP) shows, in comparison with the mid- to late Holocene, small amplitude variations in the δ18O record of up to 0.3‰ indicating relatively stable and warm sea surface conditions. The mid- to late Holocene (6–2 ka BP) exemplified higher variability in δ18O and thus in oceanic IPWP conditions. Climatically, we interpret this change (5.5–4.2 ka BP) as a phenomenon induced by variability in frequency and/or intensity changes of El Niño. In the period 4.2–2 ka BP we identified several periods, centred on 1.9, 2.1, 2.7, 3.3, 3.7 and 4.2 ka BP, with in general heavy δ18O values. During these periods, the IPWP was relocated to a more eastward position, enhancing the susceptibility for El Niño-like conditions at the core site. Over the last 2000 yr precipitation increased in the area as a response to an increase in Asian monsoon strength, resulting in a freshening of the surface waters. This study corroborates previous findings that the present-day ENSO activity started around 5.5 ka BP.  相似文献   

5.
The East Asian monsoon Holocene optimal period has been debated both about duration and whether conditions were a maximum in thermal conditions or in precipitation. In this study we show Holocene climate variability inferred by a forest reconstruction of a subalpine pollen sequence from peat bog deposits in central Taiwan, based on modern analogues of various altitudinal biomes in the region. A warmer interval occurred between 8 and 4 ka BP (calibrated 14C years) when the subtropical forests were more extensive. The Holocene thermal optimum is represented by an altitudinal tropical forest at 6.1–5.9 ka BP and 6.9 ka BP and only the latter was accompanied by wet conditions, indicating decoupling of thermal and precipitation mechanism in the middle Holocene. Abrupt and relative severe cold phases, shown by biome changes, occurred at about 11.2–11.0 ka BP; 7.5 ka BP; 7.2 ka BP; 7.1 ka BP; 5.2 ka BP, 5.0 ka BP and 4.9 ka BP. A spectral analysis of pollen of a relatively cold taxon — Salix, reveals that the time series is dominated by a 1500 yr periodicity and similar to the cold cycle reported in the marine records of Indian and western Pacific Oceans. The cold–warm conditions inferred by the change of forests show close relationship to solar energy in comparison with the production rate of Be-10.  相似文献   

6.
China's Loess Plateau was formed under special conditions. The tectonic movement, topographical characteristics, and monsoon patterns combined to create a favourable environment for the accumulation of thick loessic deposits. The Loess Plateau itself is part of the ‘Monsoon Triangle’ of China, a region very susceptible to climatic changes. Throughout the Upper Pleistocene the palaeoenvironment on the Loess Plateau alternated from steppe, to deciduous forest and coniferous forest, in response to shifts in the atmospheric circulation. Three monsoon patterns appear to be indicated: (1) a full glacial monsoon pattern (18000–15000 yr BP) which induced a cold and dry climate favouring loess accumulation in steppe conditions; (2) an interglacial monsoon pattern (last interglacial and Holocene) in which a warm humid climate prevailed with deciduous forests, leaving palaeosols interbedded within the loess sequence; and (3) a transitional or interstadial monsoon pattern (50 000–23 000 yr BP) in which the climate was cold and humid in the Loess Plateau, encouraging the development of coniferous forest.  相似文献   

7.
Playa-like sediments from the Hajar Mountain range in northern Oman (22.83°N, 59.00°E; 1050 m asl) document variations of the paleoenvironmental and paleoclimate conditions over the last 20 ka. Based on high-resolution sediment sampling and their OSL dating, sedimentation rates were calculated and used as a proxy for paleorainfall. The results show that the Glacial to Lateglacial was characterized by arid conditions with a following transitional period of even less rainfall. At 10.5 ka, sedimentation rates increases abruptly, indicating the onset of the early Holocene humid period (EHHP). Rainfall reaches its maximum at 9–8 ka (EHHP-2) and a decreasing sedimentation rate after 8 ka characterizes the arid period of the middle to late Holocene. Variations of the hydrological regime are associated with the intensity of the boreal summer Indian monsoon and its related position of the ITCZ. For the onset of the EHHP, a northerly shift of the ITCZ is postulated, thus confirming earlier results from the southern Arabian Peninsula.  相似文献   

8.
One of the goals for paleaoenvironmental research is to predict the tendency of future climate and environmental changes based on the understanding of the past. The key approach is to find similar pictures which happened in the past. By understanding the background and mechanism of the paleaoenvironmen- tal changes, reliable parameters and verifications can be provided for the numerical model to predict the tendency of future climate and environmental changes. The Mid-Holocene as the nearest …  相似文献   

9.
We present the carbon isotopic composition of the total organic carbon (TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environmental changes from 4.5 ka BP to 0.6 ka BP. Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region. The ancient forest began to develop in the wetland at around 4 ka BP and disappeared together with the wetland at about 3.0 ka BP, implying that the climate had changed greatly at around 3.0 ka BP. As indicated by the simulation results, the content of atmospheric CO2 increased slightly during 3.5 ka BP to 3.0 ka BP, implying climate warming during that period. The interval of radiocarbon age between 3.0 ka BP to 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement. From 1.2 ka BP to 0.6 ka BP, the region remained in terrestrial sedimentary environment, and the surface plant biomass declined gradually. Drought caused by the climate change was the likely cause for the disappearance of the ancient forest. South transition of Intertropical Convergence Zone (ITCZ) was probably the main mechanism for the climate change. Supported by National Natural Science Foundation of China (Grant Nos. 40231015 and 40473002), National Basic Research Program of China (Grant No. 2005CB422004), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-SW-133) and Open Funds of State Key Laboratory of Organic Geochemistry (Grant No. OGL-200607)  相似文献   

10.
Sedimentary deposits in the foreland basin of the northeastern Qilian Mountains are crucial documents recording tectonic activity and climate changes on the Tibetan Plateau. In this study, luminescence dating was used to date alluvial conglomerates and fluvial terrace sediments collected from the Beida River in the Jiuquan Basin, a foreland basin in the Hexi Corridor, northeastern Qilian Mountains. Detailed sedimentology and luminescence ages reveal that alluvial conglomerates accumulated from before 620 ka to 12 ka and that sediment accumulation rates increased at ∼330 ka and ∼35 ka, coinciding with the dates of two tectonic events (∼350 and ∼50 ka) and followed by climate cooling (from marine isotope stage (MIS) 9 to MIS 8 and from MIS 3 to MIS 2). This reveals that variations in the sediment accumulation rates are controlled by the coupling of tectonic uplift and climate cooling. The highest terrace (T7) that developed on the alluvial conglomerate base formed at ∼ 12 ka. The incision rate in the early Holocene was ∼2.1 mm/yr and increased to ∼14.6 mm/yr during the middle and late Holocene. The variations in the river incision rate provide geomorphic evidence for Holocene climate patterns in arid and semiarid areas. Luminescence dating offers a credible temporal framework for the deposits and reveals climate and tectonic effects on the evolution of the foreland basin, northeastern Qilian Mountains.  相似文献   

11.
The stability of Earth's critical zone is intimately linked with erosion, weathering and vegetation type and density. Therefore, it affects global biogeochemical processes which in turn affect the global climate by absorbing and reflecting solar radiation, and by altering fluxes of heat, water vapour, carbon dioxide and other trace gases through various feedback mechanisms. However, there is a lack of knowledge about how Earth's critical zone processes have changed over time and their link with past monsoon variability, especially in Asia. The study of lake sediments, which contain a suite of inorganic elemental and isotopic proxies, may facilitate the understanding of the Earth's critical zone processes on millennial timescales. Here we reconstruct the history of erosion–weathering–vegetation interactions since ~14.7 ka using geochemical records from a radiocarbon‐dated sediment core from Lake Gonghai in the monsoon‐arid transitional zone of north China. Detrital (Al, Ti, K, Rb) and authigenic (Ca, Sr) elemental records reveal distinct, millennial‐scale, late deglacial‐Holocene erosion and weathering patterns and transitions with the former (latter) elements showing higher (lower) values in warm intervals and vice versa. Chemical Index of Alteration (CIA) molar, a humidity proxy, suggests low humidity during the late deglacial ~11.5–14.7 ka, high humidity during the early‐mid Holocene ~11.5–3.2 ka, and intermediate humidity during the late Holocene interval since ~3.2 ka. The results of cross‐spectral analysis and comparison of our records with other climate reconstructions also suggest a pattern of orbitally‐phased humidity changes in north China. Overall, our results provide evidence for the solar‐forcing of Earth's surface processes in mid‐latitude China under natural climatic conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Lake level fluctuations of closed lakes in monsoonal regions are direct indicators of regional moisture variability related to the intensity of monsoon activities. In the current study, quartz OSL dating was applied to construct the chronology of two sedimentary sequences from the east and west shores of Huangqihai Lake in the East Asian monsoon area, and the history of lake level fluctuations during the late Quaternary was established. In the current study, we present field investigation findings of highstands of >87 m above the modern lake in enclosed Huangqihai Lake in northern China, and also use luminescence dating to establish the timing for the highstands. We conclude that: (1) Lake highstands occurred during both MIS 5 (>87 m above the modern lake) and early Holocene (∼9–8 ka, >54 m above the modern lake), (2) No highstands were observed for MIS 3 and MIS 2 during which loess has accumulated indicative of much drier climate; (3) The evolution of lakes in East Asian monsoon marginal area (e.g. Huangqihai Lake) is linked with the monsoon variation.  相似文献   

13.
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the 14C calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event.  相似文献   

14.
Particulate fluxes investigated in the central South China Sea (SCS) during 1993―1996 indicate that opal flux can be used to show primary productivity change, which provides a foundation for tracing the evolutionary relationship between the surface productivity and East Asian monsoon in the SCS during the late Quaternary glacial and interglacial periods. Based on the studies of opal % and their mass accumulation rates (MAR) at the six sites recovered from the SCS during the “Resolution” ODP Leg 184 and “Sonne” 95 cruise of the Sino-Germany cooperation, opal % and their MARs increased evidently in the northern sites since 470―900 ka, and they enhanced and reduced, respectively, during the glacial and interglacial periods. Whereas they increased obviously in the southern sites since 420―450 ka, and they augmented and declined, respectively, during the interglacial and glacial periods. The vari- ability in opal % and their MARs in the late Quaternary glacial cyclicity indicate the “seesaw” pattern of surface productivity in the SCS. The winter monsoon intensified during the glacial periods, surface productivity increased and decreased, respectively, in the northern and southern SCS. The summer monsoon strengthened during the interglacial periods, surface productivity increased and decreased, respectively, in the southern and northern SCS. The cross spectral analyses between the opal % in the northern and southern SCS during the Quaternary and global ice volume (δ 18O) and orbital forcing (ETP) indicate that the East Asian winter and summer monsoons could be ascribed to the different drive mechanisms. On the orbital time scale, the global ice volume change could be a dominant factor for the winter monsoon intension and temporal variations. As compared with the winter monsoon, the correlative summer solar radiation with the obliquity and precession in the Northern Hemisphere could be a mostly controlling factor for the summer monsoon intension and temporal variations.  相似文献   

15.
利用埃及北部Faiyum盆地获得的高取芯率沉积物岩芯,进行沉积物多种磁性参数的测量,结合有机碳、介形虫、粒度等分析,在AMS14C加速器测年的基础上,建立全新世以来湖泊沉积物磁性特征变化的时间序列.结果表明,粒度效应以及沉积后的各种次生作用对沉积物的磁性特征没有明显的影响,磁性变化主要反映了沉积物不同来源组成的相对变化.全新世前沉积物磁性较弱,主要含不完全反铁磁性矿物,与周边沙漠的物质相似,结合其粒度特征,沉积物来源应以近源物质为主.全新世早中期(约10 5.4 ka BP)沉积物磁性变化相对稳定,有机质含量也较高,指示了来自尼罗河较为稳定的物质供应;而大约5.4 ka BP尤其最近约4.2 ka BP以来,磁性的明显变化反映了流域降水减少情况下,来自青尼河物质贡献的相对增加;最近约2.0 ka BP以来沉积物的磁性变化,则更多地与盆地人类活动的强化有关.总体而言,Faiyum盆地全新世以来的环境演变主要受控于全新世以来尼罗河与盆地的水力学联系.即:全新世前盆地未与尼罗河连通时,沉积物主要来源于周边沙漠的风成物质;而受全新世早-中期来流域季风降水增加的影响,泛滥的尼罗河为盆地提供了相对稳定的物质供应,湖泊也处于高湖面;全新世晚期以来,随着流域干旱化的加剧,尼罗河与盆地的连通性开始减弱,来自高磁性的青尼罗河物质贡献开始相对增加.最近约2.0 ka BP以来,虽然仍有人工运河连接尼罗河与盆地,但沉积物磁性的显著变化更多地反映了盆地人类活动的不断强化.  相似文献   

16.
Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake,northern Xinjiang.Accele-rator Mass Spectrometry(AMS) radiocarbon dating methods were applied to bulk organic matter of the samples.Artemisia spp./Chenopodiaceae ratios and results from principal component analysis were used to infer that the lake basin was dominated by desert vegetation before ca.9.6 cal.ka BP,which suggests a warm and dry climate in the early Holocene.Desert steppe/steppe expanded during 9.6-5.5 cal.ka BP,indicating a remarkable increase both in the precipitation and temperature during the mid-Holocene.Desert vegetation dominated between 6.5 and 5.5 cal.ka BP,marking an extreme warmer and drier interval.The steppe/meadow steppe recovered,and temperatures decreased from 5.5 cal.ka BP in the late Holocene,as indicated by the increased abundance of Artemisia and the development of meadows.Holocene temperatures and moisture variations in the Sayram Lake areas were similar to those of adjacent areas.This consistency implies that solar radiation was the main driving factor for regional temperature changes,and that the effect of temperature variations was significant on regional changes in humidity.The evolution of climate and environment in the Sayram Lake areas,which were characterized as dry in the early Holocene and relatively humid in the middle-late Holocene,are clearly different from those in monsoonal areas.Dry conditions in the early Holocene in the Sayram Lake areas were closely related to decreased water vapor advection.These conditions were a result of reduced westerly wind speeds and less evaporation upstream,which in turn were caused by seasonal changes in solar radiation superimposed by strong evaporation following warming and drying local climate.  相似文献   

17.
The desert and sandy land are the products of arid climate. The spatial distribution of modern deserts and sandy land in China and their relation to climate show following characteristics: arid and hyper-arid desert zones, at isohyet of less than 200 mm, are dominated by mobile dunes; semi-arid steppe and arid desert steppe with the precipitation between 200-400mm, are dominated by semi-fixed and fixed sand dunes; the precipitation of sub-humid forest grassland and humid forest zones with scattered fixed sand land is higher than 400 mm. With this as reference, in combination with considerable amount of paleoclimatic data in desert regions and adjacent regions, the distributions of desert and sandy land in China during the last interglacial period, the last glacial maximum (LGM), and the Holocene megathermal, were preliminarily reconstructed. The results compared with that of today show that the distribution of desert and sandy land in China was greatly dwindled during last interglacial period, and the mobile dune area was about two-thirds of that of today's, but greatly expanded during LGM. However, the dwindling area of desert and sandy land in the Holocene megathermal was smaller than that in the last interglacial period. The forcing mechanism was mainly related to the changes of East Asian winter and summer monsoon, south-northward swing of the westerlies and the variations of the Qinghai-Tibet Plateau monsoon intensity caused by global climate changes during the cold and warm intervals since the last interglacial period.  相似文献   

18.
One of the most striking features of the Quaternary paleoclimate records remains the so-called 100-kyr cycle which is undoubtedly linked to the future of our climate. Such a 100-kyr cycle is indeed characterised by long glacial periods followed by a short-interglacial (10–15 kyr long). As we are now in an interglacial, the Holocene, the previous one (the Eemian, which corresponds quite well to Marine Isotope Stage 5e, peaking at 125 kyr before present, BP) was assumed to be a good analogue for our present-day climate. In addition, as the Holocene is 10 kyr long, paleoclimatologists were naturally inclined to predict that we are quite close to the next ice age. Simulations using the 2-D climate model of Louvain-la-Neuve show, however, that the current interglacial will most probably last much longer than any previous ones. It is suggested here that this is related to the shape of the Earth's orbit around the Sun, which will be almost circular over the next tens of thousands of years. As this is primarily related to the 400-kyr cycle of eccentricity, the best and closest analogue for such a forcing is definitely Marine Isotopic Stage 11 (MIS-11), some 400 kyr ago, not MIS-5e. Because the CO2 concentration in the atmosphere also plays an important role in shaping long-term climatic variations – especially its phase with respect to insolation – a detailed reconstruction of this previous interglacial from deep sea and ice records is urgently needed. Such a study is particularly important in the context of the already exceptional present-day CO2 concentrations (unprecedented over the past million years) and, even more so, because of even larger values predicted to occur during the 21st century due to human activities.  相似文献   

19.
Optical dating was applied to two loess-paleosol sections (Lujiaowan and Shuixigou) from the northern piedmont of Tianshan Mountain, Xinjiang province, China. The two sections are over 200 km apart and have a similar depositional sequence, which consists of two paleosol layers embedded by one loess layer. Two difficulties were met in optical dating. First, because the sections are located on the slope of the mountain, it was found that some cliff debris, with coarse grains (>200 μm), were mixed with the eolian sediments by rainfall, especially in the paleosol layers. Second, the optically stimulated luminescence (OSL) signals of quartz grains from the deposits were too dim to obtain a reliable equivalent dose (De). The 63–90 μm K-feldspar grains were separated to decrease the debris portion, and they yielded bright infrared stimulated luminescence (IRSL) signals. A multiple-elevated-temperature post-IR IRSL (MET-pIRIR) procedure was applied to determine De. Comparing the optical dating ages of the two sections, the Lujiaowan (LJW) and Shuixigou (SXG) sections recorded almost the same depositional process during the Holocene. The ages of the two loess layers (2.44–3.38 ka at LJW; 2.47–4.36 ka at SXG) suggested that one drought event happened widely in this westerly dominated area. The same drought event 2.5–3.5 ka ago also happened in the Chinese Loess Plateau (CLP), where the summer monsoon dominated. However, the paleosol development period (6.6–4 ka) in the study area was distinguished from the monsoon dominated area (8–4 ka), which suggests an arid early Holocene in the westerly area.  相似文献   

20.
The desert and sandy land are the products of arid climate. The spatial distribution of modern deserts and sandy land in China and their relation to climate show following characteristics: arid and hyper-arid desert zones, at isohyet of less than 200 mm, are dominated by mobile dunes; semi-arid steppe and arid desert steppe with the precipitation between 200–400 mm, are dominated by semi-fixed and fixed sand dunes; the precipitation of sub-humid forest grassland and humid forest zones with scattered fixed sand land is higher than 400 mm. With this as reference, in combination with considerable amount of paleoclimatic data in desert regions and adjacent regions, the distributions of desert and sandy land in China during the last interglacial period, the last glacial maximum (LGM), and the Holocene megathermal, were preliminarily reconstructed. The results compared with that of today show that the distribution of desert and sandy land in China was greatly dwindled during last interglacial period, and the mobile dune area was about two-thirds of that of today’s, but greatly expanded during LGM. However, the dwindling area of desert and sandy land in the Holocene megathermal was smaller than that in the last interglacial period. The forcing mechanism was mainly related to the changes of East Asian winter and summer monsoon, south-northward swing of the westerlies and the variations of the Qinghai-Tibet Plateau monsoon intensity caused by global climate changes during the cold and warm intervals since the last interglacial period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号